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Summary

The overarching goal of the project is to enhance travel reliability of highway users by provid-

ing them with reliable route guidance produced from newly developed routing algorithms that

are validated and implemented with real traffic data. To these ends, the project further devel-

ops the reliable routing algorithms, tests the idea of using the Chicago Transit Authority (CTA)

bus data to estimate travel times on arterial and local roads, and conducts a survey designed to

understand travelers’ reaction and attitude to travel reliability and their opinions about reliable

route guidance products.

Algorithm development First, a new convolution method based on Discrete Fourier Transform

(DFT) is proposed, which is more difficult to implement but has an attractive theoretical

complexity. While the new method can produce highly precise solutions, it significantly

increases computation overhead. Compared with the DFT-based method, the direct con-

volution scheme based on adaptive discretization seems to strike a better balance between

accuracy and efficiency, particulary for large-scale applications. Second, the higher or-

der stochastic dominance (SD) rules are employed to solve the reliable routing problem.

Numerical experiments show that the higher order SD rules can reduce the number of non-

dominated paths, hence promising improvements in computational efficiency. Unlike the

existing heuristic methods, this approach guarantees that all generated paths are admissi-

ble under first-order SD, or FSD. The optimal solutions solved with the second-order SD

(SSD) are found to be close to those solved with FSD, while the CPU time required to solve

the reliable shortest path problem is roughly reduced by a factor of two when the SSD rule

is employed.

CTA bus data A prototype PL/SQL code is developed to extract travel speed information from

AVL bus data and to match them to links in the Chicago regional network. In total, a

sample of one month of all matched bus data (about 28 million records) is generated and
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analyzed in the study. The results indicate that (1) on freeways and expressways, the bus

travel time data have strong correlations with those obtained from loop detectors; (2) the

data on arterial and locals streets typically contain larger noises; (3) the arterial data quality

is better on longer streets than shorter streets, and better on streets located in suburbs than

those in the downtown area; and (4) the bus data tend to overestimate travel time under

free flow or light congestion conditions, but better represent the reality in the presence

of heavy congestion. Many of these findings are expected. Note that the noises in the

arterial data are likely due to the impacts of bus stops and intersections, which are clearly

larger when the link is short and/or located in the downtown area. The lack of sufficient

data coverage is another drawback of bus data. Results indicate that many arterial links,

although served by CTA bus routes, only have a few observations each day, which are far

from enough to create a reliable daily travel time profile. Finally, even when they are not

disrupted by stops, intersections and congestion, buses and cars are likely to travel at quite

different speeds on average. Our results indicate that under free flow conditions the speed

difference between buses and cars is likely to be well over 5 mile/hour in the study area.

Travel reliability survey With the help of a professional web survey company, we obtained a

sample of 220 valid responses from students and workers in the Chicago Metropolitan

area. We found that travel reliability is the second most important decision variable in

route choice, next only to travel time. The survey results also confirm that commuters do

budget a buffer time to ensure a high probability of on-time arrival for important trips, and

that they perceive this as the most important approach to improving reliability. However,

to be attractive to most travelers, a reliable route guidance has to generate at least 10 -

20% time savings. Finally, the most desirable forms to commercialize the reliable routing

technology include integrating it into the existing Internet-based map services (such as

Google/Yahoo Maps) and developing smart-phone-based applications.

CCITT 4



Chapter 1

Introduction

1.1 Background

Travel time reliability is an important dimension of transportation service. Travel reliabil-

ity enables travelers to make better use of their own time; shippers and freight carriers need

predictable travel times to fulfill on-time arrival deliveries and other commitments in order to

keep competitive. Abdel-Aty, Kitamura & Jovanis (1997) and Liu, Recker & Chen (2004) found

that travel time reliability is one of the most important factors that affect route choice. Small,

Noland, Chu & Lewis (1999) found that both travelers and freight carries tend to avoid schedule

mismatching. However, urban transportation systems are affected by uncertainties of various

sorts, ranging from disastrous events such as terrorist attacks or earthquakes to minor incidents

such as bad weather conditions, highway maintenance or accidents. The U.S. Federal Highway

Administration (FHWA) (2000) estimates that 50-60% of congestion delays are non-recurrent, and

the percentage is even higher in smaller urban areas. Taken individually or in combination, these

factors could adversely affect and perturb the quality of transportation services. Travel behavior

researchers have revealed that the unexpected delay resulted from these disruptions produces far

greater frustration among motorists than those expected ones (FHWA 2000). The lack of travel

reliability information often encourages overly conservative risk-averse behavior or leads to un-

comfortable, sometimes disastrous, disruptions. In order to help users hedge against uncertainty,

it is important to develop new decision-supporting tools that are capable of making best use of
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various sources of data to (1) reveal and document random patterns of travel times in highway

networks and (2) provide real-time route guidance that accounts for uncertainty. The objective of

this research is to deploy reliable algorithms and to explore the potential to commercialize these

techniques. The current project is the second phase of this effort. The results from Phase I, which

was completed in 2009, are briefly summarized as follows. The reader is referred to Nie, Wu,

Nelson & Dillenburg (2009) for more details.

• We combine the GIS and traffic data from the Gary-Chicago-Milwaukee (GCM) traveler

information system with travel planning data obtained from Chicago Metropolitan Agency

for Planning (CMAP) to generate travel time distributions as the inputs for reliable route

guidance models. Figure 1.1 shows the scope of the CMAP network. GCM traffic data in-

clude two parts: loop detector data (speed, volume and occupancy), and I-PASS transpon-

der data (travel time between toll booths). In the Chicago area, the system has 827 loop

detectors and 309 I-PASS OD pairs and has operated since October of 2004. In total, there

are approximately 500 million records from 2004 - 2008 in the traffic database. A Windows

console application named GCM-Gateway was developed to download these traffic data

and convert them into a MYSQL database on a workstation at Northwestern University.

With these data, the distributions of travel times were constructed on the freeway and toll

road links. The travel time distributions on other roads were estimated from both observed

traffic data and CMAP planning data, see Nie et al. (2009).

• The reliable routing algorithm was implemented using Visual C++ and tested on the the

CMAP network. The experiments indicate that best paths do vary substantially with the

reliability requirement, measured by the probability of arriving on-time or earlier. It is also

shown that given the sheer size of the case study, the reported computational performance

is satisfactory.

• Phase I develops a software tool named Chicago Test-bed for Reliable Routing (CTR), which

provides an integrated environment to: 1) visualize and analyze traffic data, 2) construct

CCITT 6
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Downtown
Chicago

Figure 1.1: Topology of planning network from Chicago Metropolitan Planning Agency (CMAP)
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Figure 1.2: Main graphical user interface (GUI) of Chicago test-bed for reliable routing (CTR)

and display travel reliability measures for the Chicago network, and 3) provide reliable

route guidance and compare it with conventional routing algorithms. Figure 1.2 shows the

main GUI for CTR with the CMAP network loaded.

1.2 Research objectives

The first objective in Phase II is to improve the computational performance of the reliable

routing algorithm in two aspects: the convolution method that produces path travel time distri-

butions and the stochastic dominance rules adopted to generate non-dominated paths. In Phase

I, we developed a convolution method based on an adaptive discretization scheme, which were

CCITT 8
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implemented and tested in the case study. Phase II examines a new convolution method based on

Discrete Fourier Transform (DFT), which promises much better computational efficiency in the-

ory. This new method is tested extensively and compared with the method developed in Phase

I. We also implement and test the idea of using higher order stochastic dominance (SD) rules in

reliable route generation. The higher-order SD rules promise better computational performance

because the set of non-dominated paths corresponding to higher order SD rules are often much

smaller. The overall performance of this approach, particulary regarding how well it trades off

accuracy with efficiency, is evaluated with numerical experiments.

Our second objective is to explore the use of AVL bus data provided by Chicago Transit Au-

thority (CTA) for travel time estimation on local roads. Recall that Phase I is focused on the data

collected from loop detectors and I-PASS transponders on interstate highways and expressways

(see the links marked as blue and pink in Figure 1.2). Since these sensors cover only a small

portion of all network links, the travel time distributions on local roads have to be estimated

using travel planning data through statistical methods. In Phase II, a sample of AVL bus data

(one month) are extracted from the CTA bus database and the processed street speed data are

mapped onto the CMAP network for further analysis. We then analyzed how these bus data

represent real traffic conditions on different roads and discussed the potential to use them in

reliable route guidance.

The third objective of this project is to collect and understand users’ opinions about travel

reliability and corresponding route guidance products. This is regarded as a necessary step to

evaluating the potential value of reliable routing techniques as a commercial product. To this

end, a web-based survey was conducted through uSamp Inc. and a sample of responses from

more than two hundred motorists in the Chicago Metropolitan area was obtained. A preliminary

analysis of the survey results is provided.

CCITT 9
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1.3 Organization

The rest of this report is organized as follows. Chapter 2 briefly reviews the literature. Chap-

ter 3 revisits the reliable routing problem and its solution algorithms, and proposes techniques

that aim at improving the computational performance. These solution techniques are tested and

compared using numerical experiments in Chapter 4. Chapter 5 first discusses the methods used

to extract travel time data from archived CTA AVL bus database and then analyzes the quality of

these data. Chapter 6 describes the survey and analyzes the survey results. Chapter 7 concludes

the study with a summary of findings.

CCITT 10



Chapter 2

Literature Review

In this chapter, we briefly review the literature of the reliable routing models and the stochas-

tic dominance theory, and introduce the notation necessary to describing them.

2.1 Notations

Consider a directed and connected network G(N ,A,P) consisting of a set of nodes N with

the number of nodes |N | = n, a set of links A with the number of links (|A| = m), and a

probability distribution P describing the statistics of link travel times. Let the destination of

routing be node s. The travel time on any link ij (denoted as cij) is assumed to follow a random

distribution with a probability density function pij(·) and Fij(·) denotes the cumulative density

function (CDF) of cij. For brevity, other notations used in the report are summarized in Table 2.1.

2.2 Stochastic routing problem

A routing problem concerned here aims to direct vehicles from an origin to a destination

along a path that are considered “optimal” one way or another. Depending on whether or not the

guidance is coordinated by a central control unit, the problem can be classified as “centralized”

or “decentralized”. They can also be labeled as “adaptive” or “a prior”, according to whether

or not en-route re-routing is allowed. Two other factors that are often used in classification are

dynamics (i.e. travel time varies over time) and uncertainties (i.e. travel time is random). This

11
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Table 2.1: Notations

Network:
A set of links
N set of nodes
n number of nodes
m number of links
s the destination nodes
Krs set of paths between r and s
krs path k between r and s
cij random link traversal time on link ij
Γrs

1 , Γrs
2 , Γrs

3 set of FSD/SSD/TSD-admissible paths between r and s
Ωrs

1 , Ωrs
2 , Ωrs

3 set of FSD/SSD/TSD-optimal paths between r and s
πrs

k random traversal time on path krs

δrs
ijk 1 if path krs uses link ij and 0 otherwise

kjs � ij extension of path kjs along link ij
qrs demand between OD pair rs
Probability:
pij(·) probability density function for travel time on link ij
Pij(·) probability mass function corresponding to pij(·)
Pt

ij(·) probability mass function corresponding to the entry time t
Fij(·) cumulative density function for travel time on link ij
urs

k (b) maximum probability of arriving on time following path krs at a time budget b
vrs

k (α) minimum travel time that ensures on-time arrival with a reliability α following path krs

urs(b) maximum probability of arriving on time following an optimal routing policy for
OD pair (r, s), given time budget b

vrs(α) minimum travel time following an optimal routing policy for OD pair (r, s), given
desired on-time arrival probability α

urs(t, b) maximum probability of arriving on time following an optimal policy for OD pair (r, s),
given time budget b, departing at time t

k̄is(b) optimal path corresponding to uis(b)
Algorithm:
φ length of time budget intervals
ε accuracy of path comparison
L number of time units in the analysis
ϕ length of departure time intervals
T number of departure time intervals in the analysis
Other:
U(·) utility functions
V(·) disutility functions

CCITT 12
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Table 2.2: Various definitions of stochastic optimal paths

LET-based Reliability-based

Adaptive

Cheung (1998),Fu (2001)
Miller-Hooks (2001),Provan (2003)

Waller & Ziliaskopoulos (2002)
Polychronopoulos & Tsitsiklis (1996)

Gao & Chabini (2006)

Bander & White (2002)
Fan, Kalaba & Moore (2005a)

A priori
Hall (1986),Fu & Rilett (1998)

Miller-Hooks & Mahmassani (2000)
Fan et al. (2005b)

Frank (1969), Sigal, Alan, Pritsker & Solberg (1980)
Loui (1983), Sivakumar & Batta (1994)

Yu & Yang (1998)
Montemanni & Gambardella (2004)

Bard & Bennett (1991), Miller-Hooks (1997)
Miller-Hooks & Mahmassani (2003)
Miller-Hooks & Mahmassani (1998)

research considers decentralized, a prior routing problem on stochastic networks 1. The focus is

to incorporate travel reliability as an integrated objective of routing.

When uncertainties are concerned, “optimal” routing, either adaptive or a priori, has many

different definitions. A classic one considers a routing strategy optimal if it incurs the least ex-

pected travel time (LET) (Hall 1986, Polychronopoulos & Tsitsiklis 1996, Fu & Rilett 1998, Cheung

1998, Miller-Hooks & Mahmassani 2000, Miller-Hooks 2001, Fu 2001, Waller & Ziliaskopoulos

2002, Provan 2003, Gao & Chabini 2006, Fan, Kalaba & Moore 2005b). Clearly, the LET path may

not properly weigh in travel time reliability since it overlooks travel time variances. This concern

gives rise to the reliability-based routing problems.

Table 2.2 classifies stochastic routing problems in four categories, using two criteria. Our

focus is the right bottom cell, i.e., reliability-based a priori routing problem, which is further

discussed in what follows.

Frank (1969) defined the optimal path as the one that maximizes the probability of the travel

1While the routing model studied herein can address time-varying stochasticity, dynamics is not the focus of this
project.
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time equal to or less than a given threshold t0, i.e.,

k
rs
= arg

(
max

∀krs∈Krs
{P(πrs

k ≤ t0)}
)

(2.1)

Note that the distributions of all link travel times are continuous. Let C = (c12, · · · , cij, · · · ) and

Πrs = (πrs
1 , · · · , πrs

k , · · · ) be vectors of link travel times and travel times of paths between an

original-destination (OD) pair rs, respectively. Since the joint distribution of C is assumed to be

given, the joint distribution of Πrs can be obtained using the characteristic functions of C and

Πrs, and then the optimal path can be identified based on (2.1). However, this method is not

practicable because it requires both multi-dimensional integration and path enumeration.

Mirchandani (1976) presented a recursive algorithm to solve a discrete version of Equation

(2.1). However, the algorithm is suitable only for small problems since it requires to enumerate

not only all paths but also all travel time possibilities for each path through a network expansion.

Sigal et al. (1980) suggested using the probability of being the shortest path as an index to

define the optimality. For path l, the optimality index Rl is defined as:

Rl = P(πl ≤ πk), ∀k �= l (2.2)

To calculate Rl, a multi-dimensional integral has to be evaluated. To evaluate the integral, it is

necessary to obtain the set of links that are used by more than one path, and the joint distribution

of these links. Determining such a set too requires enumerating all paths.

The expected utility theory (von Neumann & Morgenstern 1967) has also been used to define

path optimality. Loui (1983) showed that the Bellman’s principle of optimality can be used to

find optimal path when utility functions are affine or exponential. This restriction was also

noticed in Eiger, Mirchandani & Soroush (1985). For a general polynomial and monotonic utility

function, Loui’s expected-utility problem can be reduced to a bi-criterion (mean and variance)

shortest path problem. In effect, a traveler is allowed to tradeoff the expected value and variance

using generalized dynamic program (GDP) (see, e.g., Carraway, Morin & Moskowitz 1990) based

on Pareto optimality (or non-dominance relationship). More general nonlinear utility functions
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may be approximated by piecewise linear functions (see Murthy & Sarkar 1996, Murthy & Sarkar

1998). They (Murthy & Sarkar 1996, Murthy & Sarkar 1998) also proposed a few efficient solution

procedures based on relaxation. The mean-variance tradeoff has been treated in other ways. For

example, Sivakumar & Batta (1994) added an extra constraint into the shortest path problem

to ensure that the identified LET paths have a variance smaller than a benchmark. In Sen,

Pillai, Joshi & Rathi (2001), the objective function of stochastic routing is a parametric linear

combination of mean and variance. In either case, GDP cannot be applied. Instead, nonlinear

programming solution techniques must be used.

Stochastic routing has also been discussed in the context of robust optimization, that is, a

path is optimal if its worst-case travel time is the minimum (Yu & Yang 1998, Montemanni

& Gambardella 2004, Bertsimas & Sim 2003). Depending on the setting, such robust routing

problems are either NP-hard (Yu & Yang 1998, Montemanni & Gambardella 2004) or solvable in

polynomial time (Bertsimas & Sim 2003).

Bard & Bennett (1991) defined the optimal path as the one that maximizes the expected

utility in a stochastic acyclic network. Compared with the study of Loui (1983) where utility

functions have to be polynomial and monotonic, Bard & Bennett (1991) only required that the

utility functions to be non-linear and monotonic. In order to find the global optimal path, all

paths have to be enumerated. To improve the computational efficiency, they attempted to reduce

the network size by using the theory of the first order stochastic dominance (see Section 2.3.2 for

details). Specifically, if a path is dominated, the links used by this path are elected for possible

elimination. In their paper, the first order stochastic dominance restraint is relaxed as ”post

median stochastic dominance”, i.e., only the points on the tail of CDF (after the median) are

checked, in order to eliminate more paths. It is shown that through reduction, 90% of paths

in an acyclic network are eliminated, which makes path enumeration practicably feasible. This

approach, however, is only applicable on acyclic networks.

Miller-Hooks (1997) and Miller-Hooks & Mahmassani (2003) also employed the first order
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stochastic dominance to define path optimality. Besides the first order stochastic dominance,

they also defined two types of path dominance: (1) deterministic dominance, and (2) expected

value dominance. Label-correcting algorithms were proposed to find non-dominant paths under

the path dominance rules. Recognizing that the exact algorithm does not have a polynomial

bound, heuristics are considered in Miller-Hooks (1997) which attempt to limit the size of the

retained non-dominant paths by a predetermined number. As noted in Miller-Hooks (1997),

however, these heuristics may not identify any non-dominant paths.

Reliability has also been defined using the concept of connectivity (Chen, Bell, Wang &

Bogenberger 2006, Kaparias, Bell, Chen & Bogenberger 2007). This approach models reliabil-

ity as the probability that the travel time on a link is greater than a threshold. Accordingly, the

reliability on a path is the product of the reliability of links used by this path (assuming inde-

pendent distributions). A software tool known as ICNavS was developed based on this approach

(Kaparias et al. 2007).

2.3 Stochastic dominance

2.3.1 Classic theory of stochastic dominance

The stochastic dominance (SD) theory has been extensively used in finance and economics to

rank random variable when their distributions are known (Hanoch & Levy 1969, Hadar & Russell

1971, Rothschild & Stiglitz 1970, Whitmore 1970, Bawa, Bondurtham, Rao & Suri 1983, Muller

& Stoyan 2002, Dentcheva & Ruszczynski 2003). This concept has been exploited to study the

stochastic routing problems by several authors (Bard & Bennett 1991, Miller-Hooks 1997, Miller-

Hooks & Mahmassani 2003, Nie & Wu 2009). We now formally introduce the SD theory in the

following.

Definition 2.1 (FSD �1) A random variable X dominates another random variable Y in the first order,

denoted as X �1 Y if FX(t) ≤ FY(t), ∀t and FX(t) < FY(t) for some t, where FX is the cumulative

density function (CDF) of random variable X.
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Definition 2.2 (SSD �2) A random variable X dominates another random variable Y in the second order,

denoted as X �2 Y if
∫ t

−∞
FX(w)dw ≤

∫ t

−∞
FY(w)dw, ∀t and

∫ t

−∞
FX(w)dw <

∫ t

−∞
FY(w)dw for some

t.

Let F(2)
X (t) =

∫ t

−∞
FX(w)dw, and the third-order stochastic dominance can be defined as fol-

lows.

Definition 2.3 (TSD �3) A random variable X dominates another random variable Y in the third order,

denoted as X �3 Y if
∫ t

−∞
F(2)

X (w)dw ≤
∫ t

−∞
F(2)

Y (w)dw, ∀t and
∫ t

−∞
F(2)

X (w)dw <
∫ t

−∞
F(2)

Y (w)dw for

some t.

According to the random utility theory, random variable X is preferred to Y implies that

X has a higher expected utility. The stochastic dominance theory not only provides a tool to

rank random variables, but also explains the ranking within the framework of utility theory,

corresponding to utility function U(·) (see e.g. Levy & Hanoch 1970)

Theorem 2.1 X �1 Y if and only if E[U(X)] > E[U(Y)], for any nondecreasing utility function U(·),
i.e., U′ ≥ 0.

Theorem 2.2 X �2 Y if and only if E[U(X)] > E[U(Y)], for any nondecreasing and concave utility

function U(·), i.e, U ′ ≥ 0 and U′′ ≤ 0.

Theorem 2.3 X �3 Y if and only if E[U(X)] > E[U(Y)], for any utility functions U(·) such that

U′ ≥ 0, U′′ ≤ 0 and U′′′ ≥ 0.

The reader is referred to Bawa (1975) and Heyer (2001) for proofs of the above classical results.

Theorem 2.1 implies that any nonsatiable decision maker who is always better off with more quan-

tities of interest (U′ > 0), prefers X to Y if X �1 Y. Theorem 2.2 is for non-satiable and risk-averse

decision makers, because any concave utility function (U ′′ < 0) implies risk-aversion (Friedman

& Savage 1948). Theorem 2.3 states that the third order stochastic dominance corresponds to
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ruin-aversion (Heyer 2001, Ullrich 2009). According to Heyer (2001) and Ullrich (2009), ruin-

averse decision makers are ”willing to accept a small, almost certain loss in exchange for the

remote possibility of large returns”, and on the other hand, ”unwilling to accept a small, almost

certain gain in exchange for the remote possibility of ruin”. It is shown that ruin aversion is

captured by positively skewed probability density functions.

2.3.2 Stochastic dominance for decreasing utility functions

Definitions 2.1, 2.2 and 2.3 are all based on the circumstance that decision-makers are never

worse off off with more quantities of the random variable of interest. That is, their utility function

is non-decreasing with respect to the quantity. However, as travel time is concerned, travelers

usually prefer shorter travel times to longer ones. That is, if the utility depends on travel time,

the utility function is decreasing, i.e., U ′ < 0. In this case, the stochastic dominance has to be

re-defined.

Definition 2.4 (FSD for decreasing utility functions �1) A random variable X dominates another

random variable Y in the first order under decreasing utility functions, denoted as X �1 Y, if FX(t) ≥
FY(t), ∀t and FX(t) > FY(t) for some t.

When stochastic dominance is defined in Definition 2.4, Theorem 2.1 becomes

Theorem 2.4 X �1 Y in the first order if and only if E[U(X)] > E[U(Y)], for any decreasing utility

function U(·), i.e., U ′ < 0.

We shall address the second and third order stochastic dominance for decreasing utility func-

tions in Chapter 3.
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Chapter 3

Formulation and Solution Algorithm

In this chapter, we introduce the underlying mathematical formulation and solution algo-

rithm for reliable route guidance. The focus is to discuss the two proposed improvements in

the solution algorithm: the convolution method based on discrete Fourier transform and the

approximation based on higher-order stochastic dominance.

3.1 Formulation

The reliable a priori shortest path (RASP) problem aims to find, starting from any node i �= s,

a priori path which requires least time budget to ensure a specified probability of arriving at the

destination s on time or earlier. Nie and Wu (2009) showed that this problem is equivalent to

finding all non-dominated paths under the first-order stochastic dominance (FSD), cf. Definition

2.4. The non-dominated paths under FSD, called FSD-admissible, is defined as follows.

Definition 3.1 (FSD-admissible path) A path lrs is FSD-admissible if ∃ no path krs such that πrs
k �1

πrs
l .

Denote Γrs
FSD as the FSD-admissible path set. Accordingly, the FSD Pareto-optimal frontier can

be identified from the admissible paths:

urs
FSD(b) = max

{
urs

k (b), ∀krs ∈ Γrs
FSD

}
, ∀b ≥ 0 (3.1)

The Pareto-optimal frontier guarantees optimality, that is, for any on-time arrival probability,

the path that gives the least time budget (i.e., the reliable shortest path) must be an admissible
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path. Once the Pareto-optimal frontier is known, an optimal path k̄rs can be identified such that

urs
k̄ (b) = urs

FSD(b). The Pareto-optimal frontier can be also represented by the inverse CDF, as

follows

vrs
FSD(α) = min

{
vrs

k (α), ∀krs ∈ Γrs
FSD

}
, ∀0 ≤ α ≤ 1 (3.2)

In Nie & Wu (2009), the RASP problem is formulated as a general dynamic programming

(GDP) problem:

Find Γis
FSD ∀i ∈ N such that

Γis
FSD = γ�1(k

is = kjs♦ij |kjs ∈ Γjs
FSD, ∀ ij ∈ A), ∀ i �= s; Γss

FSD = {0ss} (3.3)

where kjs � ij extends path kjs along link ij (therefore, the distribution of the travel time on path

kjs is generated by convolving the distributions of the travel times on path k js and link ij); γ�1(K)

represents the operation which retrieves FSD-admissible paths from a set K using Definition 3.1;

0ss is a dummy path representing the boundary condition. Problem (3.3) can be solved using

label correcting algorithms such as proposed in Miller-Hooks (1997) and our report for Phase I

(Nie et al. 2009). For brevity we do not reiterate the structure of the algorithm here. The reader

is referred to the above references.

3.2 Direct discrete convolution

A key component in the RASP algorithm is the calculation of the path travel time distributions

urs
k by convolving the travel travel time distributions of its member links. If the link travel time

distribution is continuous, the path travel time distribution can be calculated recursively from

convolution as follows:

uis
k (b) =

∫ b

0
ujs

k (b − w)pij(w)dw, ∀b ∈ [0, T], (3.4)

where T is the maximum possible travel time in the network, path kis is constructed by extending

path kjs along link ij to node i, i.e., kis = kjs � ij.
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In most cases, it is more convenient to approximate the continuous distributions with their

discrete counterparts. Let T be divided into L uniform discrete intervals with Lφ = T, then the

probability mass of interval l is calculated as

Pij(l) =
∫ lφ

(l−1)φ
pij(w)dw, l = 1, ..., L. (3.5)

Accordingly, Equation (3.4) can be discretized as

Uis
k (l) =

l

∑
l′=1

Ujs
k (l − l′)Pij(l′), l = 1, · · · , L. (3.6)

where Uis
k (l) denote the cumulative probability on path k ∈ Kis up to the lth discrete interval.

Intuitively, the quality of convolution results is controlled by the resolution of the discretization

L: a larger L generally leads to higher accuracy.

While straightforward, the discrete convolution of (3.6) is not satisfactory for a number of

reasons, of which the most important is probably the requirement for identical T and L for all

distributions 1. Wu & Nie (2009) proposed to divide the support such that each discrete interval

has the same predetermined probability mass in order to avoid estimating T a priori. Since the

discrete interval of different random variables may not be of uniform length, a different method

was proposed to perform convolution. Nevertheless, neither (3.6) nor the method proposed in

Wu & Nie (2009) recognizes the possible unevenly concentrations of probability mass. As a result,

they could over-represent the flat portions on the probability density function, while under-

representing sharp changes. In Phase I, Nie et al. (2009) designed an adaptive discretization

approach (ADA) that precisely addresses this issue. For expository convenience, we first review

this method in what follows.

ADA starts by dividing the support of each random variable into L intervals with a uniform

length φ, and then computes the probability mass functions using Equation (3.5). The key differ-

ence here, comparing to (3.6), is that φ may vary from one random variable to another, depending

1Note that the maximum possible travel time in a stochastic network is not readily available. Even if it is, such a
range is likely to be too large to represent individual distributions efficiently. See Nie et al. (2009) for more discussions.
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on the range of the support 2. Moreover, a procedure termed Consolidation is introduced to merge

consecutive intervals together such that no more than one interval has a probability mass smaller

than 1/L. “Merging” two consecutive discrete intervals means removing the boundary between

them and assigning the sum of their probability masses to the new interval. Consolidation pro-

duces a set of effective support intervals (ESI), whose size is often much smaller than the initial

discretization resolution L.

Consider two random variables X and Y, which, after discretization and consolidation, can

be represented by a set of discrete support points, Wx and Wy, and associated probability mass

vectors, Qx and Qy. Let the number of effective support points for X and Y be Lx and Ly,

respectively. We have

Wx = [wx
1, ..., wx

Lx
], Wy = [wy

1, ..., wy
Ly
], Qx = [qx

1, ..., qx
Lx
], Qy = [qy

1, ..., qy
Ly
]

The following procedure can be used to convolve X and Y, i.e, to obtain Z = X ⊗Y.

ADA-based Direct Convolution Scheme

Inputs: Wx, Wy, Qx, Qy.

Outputs: Wz, Qz, i.e., the vectors of discrete support points and probability mass for Z = X ⊗ Y.

Step 0 Obtain the range of support for Z. Set bz
0 = 1.5(wx

1 + wy
1)− 0.5(wx

2 + wy
2), bz

L = 1.5(wx
Lx
+

wy
Ly
)− 0.5(wx

Lx−1 + wy
Ly−1). Divide [bz

0, bz
L] into L intervals of uniform length, and compute

φ = (bz
L − bz

0)/L. Initialize pz
l = 0, ∀l = 1, · · · , L.

Step 1 for i = 1, 2, · · · , Lx,

for j = 1, 2, · · · , Ly,

Calculate ts = wx
i + wy

j and tp = qx
i qy

j . Define l =
[

ts−bz
0

φ

]
−

, and set pz
l = pz

l + tp

end for
2Discrete random variables often have a well-defined, finite support range. For continuously distributed random

variables that have infinite support ranges, the upper (lower) bound of the support can be taken at a 100(1 − ε) (ε)
percentile value, where ε is a small positive number selected by the modeler. The value used in this project is 0.001.
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end for

Step 2 Call Procedure Consolidation to obtain Wz, Qz with inputs {bz
0, bz

1, ..., bz
L}, {pz

1, ..., pz
L}.

Consolidation

Inputs: Vectors of initial discrete intervals and probability {b0, b1, ..., bL}, {p1, ..., pL}.

Outputs: W = {w1, ..., wL0}, Q = {q1, ..., qL0}, where L0 is the number of effective support points.

Step 0 Initialization. Set l = 1, i = 1, φ = 1/L. Set tp = 0, ts = 0.

Step 1 if i > L; stop, set L0 = l; otherwise, tp = pi, ts = 0.5(bi−1 + bi)pi, go to Step 2.

Step 2 If tp > φ, ql = tp, wl = ts/tp, set i = i + 1, l = l + 1, go to Step 1; otherwise, go to Step 3.

Step 3 Set i = i + 1, tp = tp + pi; ts = ts + 0.5(bi−1 + bi)pi, go to Step 2.

Nie et al. (2009) observed that consolidation reduces the number of support points required

to represent a distribution by a factor of 3, while producing PDF and CDF very similar to those

of the original distribution (represented by L support points). While this observation indicates

that consolidation may bring out significant computational benefits without sacrificing much

numerical accuracy, it is unclear how the small errors introduced by consolidation would accu-

mulate during the course of convolutions. Numerical experiments presented later will address

this question.

As pointed out in the report for Phase I (Nie et al. 2009) , the main shortcoming of the ADA-

based direct convolution scheme is its quadratic complexity. We next examine the convolution

method based on the discrete Fourier transform, which provides a much better theoretical com-

plexity.

3.3 Convolution based on discrete Fourier transform

The Fourier transform is often used to convert a complex-valued function from the time do-

main to the frequency domain (Bracewell 2000). Specifically, let f̂ (s) denote the Fourier transform
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of function f (x), then

f̂ (s) =
∫ ∞

−∞
f (t)e−2πitsdt. (3.7)

The Fourier transform simplifies convolution. That is, if h(t) is the convolution of f (t) and

g(t), written as f (t)⊗ g(t), then

ĥ(s) = f̂ (s) · ĝ(s) (3.8)

Note that i in Equation (3.7) is the imaginary unit, i.e., i =
√−1. In the discrete case, the

sequence of L numbers [p1, ..., pL] (in the time domain) can be transformed into the sequence of

complex numbers [ p̂1, ..., p̂L] (in the frequency domain) using the following formula:

p̂k =
L

∑
l=1

pl exp
(−2πi

L
(k − 1)(l − 1)

)
, k = 1, ..., L (3.9)

Equation (3.9) is called discrete Fourier transform (DFT). On the other hand, the inverse discrete

Fourier transform (IDFT) reads

pl =
L

∑
k=1

p̂k exp
(

2πi
L

(k − 1)(l − 1)
)

, l = 1, ..., L (3.10)

Since DFT can be computed in time O(L log L) using the fast Fourier transform (FFT) algo-

rithm (Cormen, Leiserson, Rivest & Stein 2001), the convolution based on DFT has a theoretical

complexity of O(L log L) (it involves one FFT, one inverse FFT (IFFT), and a point-wise mul-

tiplication). Note that to apply FFT in convolution requires that the discrete intervals of both

distributions have the same length. The following procedure describes how to convolve two

distributions through FFT.

Procedure: Basic DFT-based Convolution

Inputs: Support point vectors Wx =
(
wx

1, wx
1 + φ, wx

1 + 2φ, · · · , wx
1 + (Lx − 1)φ

)
and Wy =

(
wy

1, wy
1 + φ, wy

1 + φ, · · · , wy
1 + (Ly − 1)φ

)
, and the corresponding probability mass vectors

Qx and Qy.

Outputs: Wz and Qz for Z = X ⊗ Y.
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Step 0 Find an integer m such that 2m ≥ Lx + Ly − 1 and 2m−1 < Lx + Ly − 1.

Step 1 Extend Qx and Qy so that each has 2m elements. All newly added elements are zeros.

Step 2 Transform Qx and Qy to Q̂x and Q̂y, respectively, using Equation (3.9).

Step 3 Perform a point-wise multiplication of Q̂x and Q̂y to get Q̂z.

Step 4 Transform Q̂z to Qz, using Equation (3.10).

Step 5 Truncate Qz so that it only keeps the first Lx + Ly − 1 elements. Let Lz = Lx + Ly − 1.

Then, corresponding to Qz, the discrete support points are Wz =
(
wx

1 + wy
1, wx

1 + wy
1 +

φ, wx
1 + wy

1 + 2φ, · · · , wx
1 + wy

1 + (Lz − 1)φ
)
.

The Cooley-Tukey algorithm is employed to conduct FFT and IFFT (Cooley & Tukey 1965) in

Steps 2 and 4. More specifically, a radix-2 decimation-in-time algorithm is implemented. Note

that Qx and Qy have to be extended to 2m in Step 0 because the algorithm requires the length

of the probability mass vector to be a power of two. It is also worth noting that the DFT-based

convolution requires both distributions have discrete intervals of equal length (i.e., φ). If the

input discrete distributions do not satisfy this condition, they have to be re-adjusted according to

an identical φ.

3.4 Convolution of multiple random variables

3.4.1 All-at-once versus one-at-a-time

When convolution involves n > 2 distributions, the ideal choice is taking an all-at-once

scheme (Ng & Waller 2010). That is, all distributions are transformed to the frequency domain

and convolved all-at-once in that domain (through pointwise multiplication) until the resulting

distribution is transformed back to the time domain. This scheme only requires n FFT and one

IFFT operations. However, it requires that the probability mass vectors of all member links be

extended to the same length. The details of the procedure are described below.
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Procedure: All-at-once DFT-based convolution (for multiple random variables)

Inputs: Random variables X1, X2, · · · , Xn, whose vectors of support points are W1, W2, · · · , Wn,

with the corresponding probability mass vectors Q1, Q2, · · · , Qn, respectively. The length

of Wk is Lk, k = 1, 2, · · · , n.

Outputs: Vectors of support points and probability mass for Z, Wz and Qz respectively, where

Z = X1 ⊗ X2 ⊗ · · · ⊗ Xn.

Step 0 Set the total number of the support points of Z as ∑n
i=1 Li − n + 1.

Step 1 Find an integer m such that 2m ≥ ∑n
i=1 Li − n + 1 and 2m−1 < ∑n

i=1 Li − n + 1.

Step 2 Extend the lengths of Q1, Q2, · · · , Qn to 2m by adding zeros at the end of vectors.

Step 3 Transform Q1, Q2, · · · , Qn to Q̂1, Q̂2, · · · , Q̂n using Equation (3.9).

step 4 Compute the convolution of distributions in the frequency domain: Q̂z = ∏n
i=1 Q̂i.

step 5 Transform Q̂′
z to Qz using Equation (3.10). .

step 6 Truncate Qz such that it only keeps the first ∑n
i=1 Li − n+ 1 elements. The discrete support

points are Wz =
(

∑n
i=1 wi, ∑n

i=1 wi + φ, ∑n
i=1 wi + 2φ, · · · , ∑n

i=1 wi + (Lz − 1)φ
)
, where Lz =

∑n
i=1 Li − n + 1.

A main problem associated with the above convolution scheme is that it cannot be directly

applied in the label-correcting algorithm for the RASP problem. For one thing, because the

probability mass vector of each link has to be extended to a specific length which depends on the

total number of support points of all member links, the method implicitly requires generating

an entire path before calculating its distribution. However, since paths and their travel time

distributions are generated concurrently in a label-correcting algorithm, not all member links of

a path are known until the algorithm is terminated. Moreover, the all-at-once scheme makes it
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very difficult to identify dominated paths, as the stochastic dominance is defined in the time-

domain. Without the ability of eliminating dominated sub-paths, the label-correcting algorithm

basically equals path enumeration, which is computationally prohibitive for large problems.

The above problem can be resolved using a one-at-a-time convolution scheme. The main idea

is to perform one convolution each time in the frequency domain, and then to transform the

intermediate result back to the time domain so that the dominance relationship can be properly

checked. The procedure is given as follows (note that the inputs and outputs are ignored because

they are the same to the all-at-once scheme).

Procedure: One-at-a-time DFT-based convolution (for multiple random variables)

Step 0 Set Qz = Q1, Wz = W1.

Step 1 For i = 2 to n, call Basic DFT-based Convolution with inputs Wz, Wi, Qz, Qi to obtain

W ′
z, Q′

z. Then update Wz = W ′
z, Qz = Q′

z.

Note that the one-at-a-time scheme requires approximately 2n FFT and n IFFT operations

(since each convolution involves two FFT and one IFFT operations). This triples the amount of

total FFT operations compared to the all-at-once scheme. However, the good news is that most

convolutions would operate on shorter vectors. Suppose that each distribution has L support

points. Conducing FFT for each link requires approximately O(nL log(nL)) steps in the all-at-

once scheme, where nL is an approximated length of each probability mass vector. In total, the

number of the required steps is in the order of (n2L log(nL) + n(n − 1)L) � (n2L log(nL) 3. For

the one-at-a-time scheme, the number of the required steps is in the order of

3 × 2L log(2L) + 2L + 3 × 3L log(3L) + 3L + · · ·+ 3 × nL log(nL) + nL

≤1.5n(n − 1)L log(nL) +
n(n − 1)L

2

Note that iL log(iL) is the steps required by one FFT (or IFFT) in the (i − 1)th convolution, and

each convolution in the one-at-a-time scheme requires two FFT and one IFFT operations. It can

3The first term in the parenthesis is the cost of FFT and IFFT and the second accounts for point-wise multiplication.
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be seen from the above analysis that the one-at-a-time scheme has a complexity comparable with

the all-at-once scheme thanks to the savings from operating on shorter vectors. Also, this saving

is more significant when n is larger, because the upper bound 1.5n(n − 1)L log(nL) + n(n−1)L
2

becomes looser. More importantly, the one-at-a-time scheme can be easily integrated with the

label-correcting algorithm because the intermediate convolution results are always available in

the time domain for the dominance check. Furthermore, the one-at-a-time scheme makes it

possible to reduce the number of ineffective support points generated in convolution, which

could further improve the computation efficiency. To the elaboration of the last point we now

turn.

3.4.2 Ineffective support points in DFT-based convolution

We first highlight the issue of ineffective support points in the DFT-based convolution through

a numerical example. It is worth reiterating that this problem can only be addressed if a one-

at-a-time scheme is employed. Consider four paths which consist of, respectively, 2, 3, 4 and 14

links. All link travel times follow the Gamma distribution, with the same parameter setting as

in Section 4 of Wu & Nie (2009). The length of discrete travel time interval φ is set to 0.1. The

path travel time distributions are obtained using the one-at-a-time convolution scheme. Table

3.1 shows the numbers of support points of these distributions corresponding to different cu-

mulative probability ranges. Take the 2-link path as an example. In the range between 0.99 to 1

located 293 discrete points, which means that these support points together contributes to about

1% of all probability masses. Storing and manipulating those 293 discrete support points are

clearly ineffective from the computational point of view because they contribute little to shap-

ing the distribution. A less obvious yet more severe problem created by these ineffective support

points is that their presence may generate many non-dominated paths which would be otherwise

dominated. These “extra” non-dominated paths could bring about significantly higher memory

requirements and computational overhead, while making little difference on the Pareto optimal-

ity frontier (and hence on route choice). We note that these problems can become still worse as
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Table 3.1: Number of support points used to present the travel time distributions of four paths
in different intervals of cumulative probability α

0.01 ≤ α ≤ 0.99 0 ≤ α < 0.01 0.99 < α < 1 0.999 < α < 1
2-link 113 12 293 247
3-link 113 34 728 539
4-link 324 88 1049 935
14-link 396 323 3089 2977

the number of links increases. For the 14-link path, 98% of all probability mass are contributed

by less than 9% of the support points. On the other hand, more than 80% of all support points

are located between 0.99 and 1.

In light of the above observations, we propose to re-adjust the discrete distribution generated

from the basic DFT-based convolution by removing the ineffective support points. A support

point is labeled as ineffective if it is located in the interval of α < ε or α > 1 − ε, where α is the

cumulative probability and ε is a pre-determined accuracy index. Note that ε controls how many

support points would be labeled as “ineffective” and therefore being excluded from the vector

of support points. Thus, the larger the index is, the more support points would be removed, and

larger approximation errors would be introduced by the procedure. We describe in the following

a revised DFT-basic convolution scheme which includes a post-process to remove the support

points ineffective with respect to ε. For convenience, this procedure is called approximated DFT-

based convolution.

Procedure: Approximated DFT-based convolution

Inputs: Inputs for the basic DFT-based convolution, and the accuracy index ε.

Outputs: Vector of effective support points W̃z and the corresponding probability mass vector

Q̃z.

Step 0 Call the basic DFT-based convolution to obtain the original probability mass vector Qz

and the corresponding support point vector Wz.
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Step 1 Calculate the cumulative probabilities Fz = ( f z
1 , f z

2 , · · · , f z
Lz
) based on Qz.

Step 2 If f z
i < ε and f z

i+1 > ε, let q̃z
1 = f z

i and w̃z
1 = wz

i ; if f z
j−1 < 1 − ε and f z

j > 1 − ε, let

q̃z
j−i+1 = 1 − f z

j−1, and w̃z
j−i+1 = wz

j . For any i < l < j, set q̃z
l−i+1 = qz

l , and w̃z
l−i+1 = wz

l . Set

Q̃z = {q̃z
1, · · · , q̃z

i−j+1}, W̃z = {w̃z
1, · · · , w̃z

i−j+1}

The post-process in Step 2 simply concentrates ε probability mass on the first and last support

points, which would change the range of the entire support, as well as the overall shape of the

distribution. It is thus important to examine how the convolution results might be affected

by the approximation errors. We address this question in the next chapter through numerical

experiments.

3.5 Higher-order stochastic dominance

3.5.1 Definitions

In Chapter 2, we have reviewed the theory of stochastic dominance. Especially, we discussed

the first order stochastic dominance when the utility function is non-increasing. According to

the theory, the FSD rule is used by non-satiable travelers whose utility always decreases as travel

time increases. Essentially, it can be shown that if X �1 Y, then E[U(X)] > E[U(Y)] for any

utility function U such that U ′ < 0 (Theorem 2.4). Higher order stochastic dominance can be

used to address decision-makers’ risk-taking preference. Let us first define the second-order SD

(SSD) and third-order SD (TSD) as follows.

Definition 3.2 (SSD for decreasing utility functions, �2) A random variable X dominates another

random variable Y in the second order, denoted as X �2 Y, if

∫ T

t
FX(w)dw ≥

∫ T

t
FY(w)dw, ∀t and

∫ T

t
FX(w)dw >

∫ T

t
FY(w)dw for at least one t

Definition 3.3 (TSD for decreasing utility functions, �3) A random variable X dominates another

random variable Y in the third order, denoted as X �3 Y, if

∫ T

t
F(2d)

X (w)dw ≥
∫ T

t
F(2d)

Y (w)dw, ∀t and
∫ T

t
F(2d)

X (w)dw >
∫ T

t
F(2d)

Y (w)dw for at least one t
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where F(2d)
X (t) =

∫ T

t
FX(w)dw.

X �2 Y implies that E[U(X)] > E[U(Y)] for any utility function U such that U ′ < 0 (decreasing)

and U′′ < 0 (concave); X �3 Y implies that E[U(X)] > E[U(Y)] for any U such that U ′ < 0, U′′ <

0 and U′′′ < 0. Note that the concave utility function (i.e. U ′′ < 0) can be interpreted as risk

aversion in the sense that an individual with such a utility function would always prefer the

expectation of a random variable to the random variable itself (Friedman & Savage 1948). On the

other hand, U ′′′ < 0 can be interpreted as ruin aversion. A ruin-averse individual would accept

“a small, almost certain loss in exchange for the remote possibility of large returns” (Heyer 2001,

Ullrich 2009).

Similarly, we can define SSD- and TSD-admissible paths as follows.

Definition 3.4 (SSD/TSD-admissible path) A path lrs is SSD/TSD-admissible if ∃ no path krs such

that krs �2 / �3 lrs.

SSD- and TSD-admissible path set are denoted as Γrs
SSD and Γrs

TSD respectively, and the correspond-

ing Pareto-optimal frontiers are

urs
SSD(b) = max

{
urs

k (b), ∀krs ∈ Γrs
SSD

}
, ∀b ≥ 0, urs

TSD(b) = max
{

urs
k (b), ∀krs ∈ Γrs

TSD
}

, ∀b ≥ 0

(3.11)

Furthermore, the following relationship between the admissible path sets under different SD

rules can be derived from the SD definitions.

Proposition 3.1 Γrs
TSD ⊆ Γrs

SSD ⊆ Γrs
FSD.

Proof: cf. Wu & Nie (tentatively accepted). �

To further clarify the above results, Figure 3.1 plots the CDFs of the random travel times on

three paths. The discrete probability mass functions of these random variables, as well as their

mean, variance and skewness are specified in the table next to the figure. Using Definition 2.4,

one can verify that all the three paths are FSD-admissible. According to Definition 3.2, paths 2

and 3 are SSD-admissible, and they both dominate path 1 in the second order. Finally, using
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Path 1
Path 2
Path 3

Time Path 1 Path 2 Path 3
0 0.00 0.00 0.00
1 0.10 0.05 0.15
2 0.19 0.20 0.20
3 0.30 0.38 0.25
4 0.39 0.40 0.35
5 0.50 0.42 0.63
6 0.60 0.50 0.69
7 0.70 0.81 0.75
8 0.80 0.95 0.97
9 0.90 0.99 0.99

10 1.00 1.00 1.00
Mean 5.00 5.30 5.02
Var. 11.00 6.27 6.00
Skew. 0.00 -0.12 -0.19

Figure 3.1: Cumulative density functions of travel times of three paths

Definition 3.3 one can show that path 3 dominates paths 2 and 1 in the third order, and hence

path 3 is the only TSD-admissible path. Interestingly, path 1 has higher variance comparing to

the other two paths, which explains why it is not preferred by any risk-averse traveler. Also note

that the TSD-admissible path has the most negative skewness among all paths, which is related

to the ruin-averse behavior. However, path 2 is not TSD-admissible even though it has a negative

skewness. Thus, negative skewness does not ensure TSD-admissibility.

Finally, path 1 gives an example where admissibility does not warrant optimality. Note that

while path 1 is FSD-admissible, it does not give the least time budget for any cumulative prob-

ability. Any non-satiable traveler who is interested in minimizing travel time would not choose

path 1, regardless of their desired probability of arriving on time.

3.5.2 Finding SSD/TSD-admissible paths

We have shown that FSD-admissible paths can be found by checking the stochastic dominance

relationship between any pair of paths and eliminating those that are dominated. SSD/TSD-

admissible paths can be found in the same way. SSD/TSD-admissible paths have the following

properties:

Proposition 3.2 SSD/TSD-admissible paths have the following properties: (1) They must be acyclic; (2)
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Subpaths of any SSD/TSD-admissible paths must be also SSD/TSD-admissible.

Proof: cf. Wu & Nie (tentatively accepted). �

According to Proposition 3.2, the same formulation and solution algorithm for finding FSD-

admissible path can also be used to find higher-order admissible paths. The only difference is

that the operator γ�1 in the formulation (3.3) should be replaced with γ�2 and γ�3 for SSD and

TSD, respectively.

Since Γrs
TSD and Γrs

SSD are smaller than Γrs
FSD (Proposition 3.1), these higher-order admissible

sets are potentially easier to enumerate. More important, Proposition 3.1 ensures that the higher-

order SD-admissible paths must also be FSD-admissible. However, since they lead to different

admissible path sets, the higher order SD rules also produce different Pareto-optimal frontiers.

In fact, one can show that

urs
FSD(b) ≥ urs

SSD(b) ≥ urs
TSD(b), ∀b

That is to say, for the same time budget, the higher-order SD frontiers always generate a more

conservative path, which has an equal or lower on-time arrival probability comparing to the FSD

counterpart.
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Chapter 4

Experiment Results

Numerical experiments are conducted in this chapter to evaluate the performance of vari-

ous numerical convolution methods, including the newly developed DFT-based schemes, and

approximation methods deriving from higher-order stochastic dominance. All algorithms were

coded using C++ and tested on a Windows-XP (64) workstation with two 3.00 GHz Xeon CPUs

and 4G RAM.

4.1 Evaluation of numerical convolution methods

Results of four experiments are presented in this section. The first three are designed to

examine the computational performance of various methods in computing convolutions along

two sample paths, each consisting of 20 and 10 links respectively. The link travel time distri-

butions are assumed to follow the Gamma distributions, with the same parameter setting as in

Section 4 of Wu & Nie (2009). The first experiment is focused on the impacts of discretization

and consolidation on the ADA-based direct convolution scheme. The second experiment com-

pares the convolution results obtained from the ADA-based direct convolution with those from

the DFT-based convolution. The third experiment compares the all-at-once and one-at-a-time

DFT-based schemes, and also examines the performance of the approximated DFT-based convo-

lution scheme. The last experiment actually solves the RASP problem on a medium-size network

(Chicago sketch network), using two convolution schemes: the ADA-based direct convolution
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scheme and the approximated DFT-based convolution scheme. By default, the DFT-based con-

volution is implemented using the one-at-a-time scheme.

4.1.1 ADA-based direct convolution

Recall that the ADA-based direct convolution includes a consolidation procedure to merge

support points whose probability mass is less than 1/L, where L is a predetermined upper

bound for the number of support points and can be viewed as a global parameter that controls

the solution quality. After consolidation, the actual number of support points used to represent a

distribution is typically much smaller than L. While this helps reducing computational cost, it is

important to know how much it compromises the solution quality. Another interesting question

is how sensitive the convolution results are to the global control parameter L.

To answer the above questions, we generate and compare six distributions for each path

using the ADA-based method, each corresponding to L = 100, 500, 1000 and with or without

consolidation. The CDFs of these distributions are plotted together in Figure 4.1-(a). Clearly, the

differences between these distributions are hardly visible at this scale for both paths, which may

be an indication that the most computationally efficient choice (L = 100 with consolidation) does

provide a reasonable solution.

To better gauge the differences, the following error metrics are introduced.

λA = max
∀α∈Λ

(
λA(α)

)
; λ̄A = ∑

∀α∈Λ

(
λA(α)

)
/|Λ|, where (4.1)

λA(α) =
|vB(α)− vA(α)|

vB(α)
; Λ = {0.01, 0.02, · · · , 0.99}, (4.2)

and vrs
A(·) and vrs

B (·) are the inverse CDFs of the test and benchmark distributions. Note that we

ignore the portions of CDF when α < 0.01 and α > 0.99 because the differences in these ranges

are deemed practically insignificant.

For both paths, the distributions obtained with the highest resolution (L = 1000) and without

consolidation are used as the benchmark. The CPU time required to obtain each distribution

and their error metrics relative to the benchmark distribution are given in Table 4.1. We first
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    b. DFT−based convolution scheme
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                              c. Distributions solved by the ADA-based and DFT-based convolution schemes d

10−link path
20−link path

L = 100,500,1000
 Φ = 0.01, 0.02, 0.05, 0.1

10−link path
20−link path

20−link path
10−link path

L = 100,500,1000
Φ  = 0.01, 0.1

Figure 4.1: Distributions of path travel times solved by different convolution methods, under
different setting of length of intervals (φ) and number of discrete intervals (L)
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Table 4.1: Computational performance of the ADA-based direct convolution

Path Performance Index
With Consolidation Without Consolidation

L = 100 L = 500 L = 1000 L = 100 L = 500 L = 1000

10
-l

in
k Max Error λA 1.54% 0.12% 0.10% 0.39% 0.05% –

Ave Error λ̄A 0.13% 0.02% 0.02% 0.16% 0.03% –
CPU time(second) < 0.001 0.006 0.040 0.009 0.056 0.254

20
-l

in
k Max Error λA 2.64% 1.22% 0.90% 2.43% 0.12% –

Ave Error λ̄A 0.12% 0.11% 0.06% 0.09% 0.04% –
CPU time(second) < 0.001 0.012 0.078 0.016 0.109 0.502

Note: the case where L = 1000 (highest resolution) and without consolidation is used as the benchmark
case.

note that maximum and average errors in all cases are relatively small (the largest deviation

from the benchmark is still smaller than 3%). As expected, when L increases, both average and

maximum errors decreases while more CPU time is required for the calculation. It seems that the

improvement of the solution quality is outpaced by the degrading computational performance.

For instance, when L is increased from 100 to 1000 for the 20-link path (with consolidation), the

average errors was reduced by 50% while the CPU time was 78 times higher.

In most cases, the errors in the cases with consolidation are larger than those without 1.

However, the gains in the computational performance by consolation seems to make up for the

loss in solution quality. For example, when L = 500 (the 20-link path), consolidation increases

the average error by a factor of 3, but reduces the CPU time by a factor of 9. Because the above

results suggest that consolidation is an effective strategy, the ADA-based direct convolution is

always implemented with consolidation in other experiments.

4.1.2 ADA-based direct convolution vs. DFT-based convolution

We first reveal how the solution obtained by the one-at-a-time DFT-based convolution scheme

converges as the resolution φ decreases. For this purpose, four different values of φ, 0.1, 0.05,

0.02 and 0.01, are tested. Figure 4.2-a shows that, when φ decreases from 0.1 to 0.01, the CPU

1Interestingly, for the 10-link path, when L = 100, 500, consolidation led to slightly smaller average errors. The
mechanism that leads to this seemingly counter-intuitive result remains unclear. However, we note that these incidents
are likely to have low occurrence and insignificant consequences.
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Figure 4.2: Comparison of the distributions generated by the DFT-based convolution with dif-
ferent resolutions. φ = 0.1, 0.05, 0.02 and 0.1) (φ = 0.01 is used as a benchmark to measure the
errors of other cases

time required to compute convolution increases from 0.016 seconds to 0.125 seconds for the 10-

link path, and from 0.047 seconds to 0.359 seconds for the 20-link path. Figure 4.2-b and 4.2-c

show that the average and maximum errors (as defined in Equation (4.1)) of the distributions

generated with different φ, using the case with φ = 0.01 as the benchmark. Clearly, both error

indexes decrease quickly with φ. The maximum error for φ = 0.1 is 0.11% and 0.09% for the

20-link path and 10-link path, respectively, and the maximum errors of φ = 0.02 is reduced to

0.05% and 0.01%.

Figure 4.1-(c) compares the distributions solved using the ADA-based direct convolution

(where L = 100, 500, 1000), with those solved by the DFT-based convolution (where φ = 0.01).

Table 4.2 reports the error indexes using the DFT-based solution as a benchmark, which shows

that the relative errors increase as L decreases. However, even when L = 100, the maximum and

average errors are only 1.23% and 0.14%, respectively, for the 20-link path. On the other hand,

the distribution of the 20-link path solved from the DFT-based convolution uses 42,412 support

points, and it took about 0.688 seconds CPU time to perform the convolution. As a comparison,

the ADA-based direct convolution (L = 100) only generates 55 support points for the final distri-

bution, and the entire convolution process takes less 0.001 seconds CPU time. This suggests that

the ADA-based direct method is able to strike a better balance between efficiency and accuracy,

compared to the DFT-based method.
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Table 4.2: Comparison of the distributions generated by the ADA-based direct convolution (L =

100, 500, 1000) and by the DFT-based convolution (φ = 0.01), which is set as the benchmark

Performance Index
10-link path 20-link path

L = 1000 L = 500 L = 100 L = 1000 L = 500 L = 100
Maximum error λA 0.11% 0.44% 1.36% 0.10% 0.34% 1.23%
Average error λ̄A 0.01% 0.01% 0.14% 0.01% 0.02% 0.14%

4.1.3 Comparison of DFT-based convolution schemes

This section compares three DFT-based convolution schemes: the all-at-once convolution

scheme (DFT-I), the one-at-a-time convolution scheme (DFT-II), and the approximated DFT-based

convolution scheme (DFT-III). We still set φ = 0.1, 0.05, 0.02 and 0.01 in this experiment. For DFT-

III, two accuracy indexes are tested, namely ε = 0.01 and 0.001.

The CPU times used to calculate the travel time distributions of two paths are reported in

Table 4.3, and the error indexes are reported in Table 4.4 (the benchmark distributions are those

solved by DFT-II with φ = 0.01). These results indicate that removing the ineffective support

points leads to significant gains in the computational efficiency, at the expense of modest loss in

accuracy. When φ = 0.01, ε = 0.01, for example, DFT-III only needs about 1/6 of the CPU time

used by DFT-II for the 20-link path. Yet the average error is only 0.53%.

Table 4.4 shows that the one-at-a-time and all-at-once convolution schemes produce almost

identical convolution results. From Table 4.3 we can see that DFT-I is slightly faster than DFT-II

for the 10-link path, but mostly slower for the 20-link path. This observation agrees with the

complexity analysis given in Section 3.4.2, which suggests that the two schemes have similar

complexity but DFT-I is likely to become relatively slower as the path contains more links. For

further clarification, a 5-link path is tested and the results obtained from the two schemes are

reported again in Table 4.3. As expected, DFT-I is consistently faster than DFT-II in all cases and

the differences of CPU times are significant. While by no means conclusive, these results seem to

indicate that the ideal all-at-once convolution may perform well only when paths are short.
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Table 4.3: Computation time (in seconds) of three DFT-based convolution schemes

Reso.
φ

20-link path 10-link path 5-link path
DFT DFT DFT-III DFT DFT DFT-III DFT DFT

I II ε = 0.01 ε = 0.001 I II ε = 0.01 ε = 0.001 I II
0.1 0.047 0.047 0.015 0.016 0.015 0.016 < 0.001 < 0.001 < 0.001 0.015
0.05 0.110 0.063 0.016 0.016 0.015 0.031 < 0.001 < 0.001 < 0.001 0.015
0.02 0.204 0.251 0.031 0.063 0.062 0.079 0.015 0.032 0.016 0.032
0.01 0.453 0.359 0.078 0.141 0.125 0.125 0.031 0.047 0.016 0.047

Note: DFT-I refers to the all-at-once convolution scheme; DFT-II refers to the one-at-a-time convolution
scheme; and DFT-III refers to approximated DFT-based convolution scheme.

Table 4.4: Comparison between the distributions generated by the three DFT-based schemes, the
benchmark distributions are those solved by DFT-II with φ = 0.01

Scheme
���������Index

Reso.φ 20-link path 10-link path
0.1 0.05 0.02 0.01 0.1 0.05 0.02 0.01

DFT-III Max. err. λA 6.32% 3.48% 3.49% 6.26% 4.19% 4.09% 4.06% 4.05%
ε = 0.01 Ave. error λ̄A 0.74% 0.61% 0.61% 0.53% 0.92% 0.85% 0.82% 0.81%
DFT-III Max. err. λA 3.02% 2.30% 2.28% 0.65% 3.57% 3.52% 3.48% 3.47%

ε = 0.001 Ave. err. λ̄A 0.75% 0.65% 0.62% 0.05% 1.18% 1.08% 1.03% 1.01%

DFT-I
Max. err. λA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Ave. err. λ̄A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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4.1.4 Impacts of convolutions schemes on reliable path finding

The previous results have shown the both ADA-based and approximated DFT-based convo-

lution schemes provide satisfactory trade-off between efficiency and accuracy. We now further

examine these two schemes by applying them to solve the RASP problem on the Chicago sketch

network, which has 933 nodes and 2950 links (Wu & Nie 2009). All link travel times are assumed

to follow Gamma distributions with the same parameter setting in Section 4 of Wu & Nie (2009).

For the approximated DFT-based convolution scheme, the travel time resolution φ is set to 0.1, 0.2

and 0.5, and the accuracy index ε is set to 0.01 and 0.001. For the ADA-based direct convolution

scheme, L is set to 100.

In this experiment, the FSD-Pareto-optimal frontiers are used to measure the quality of the

solutions obtained by different convolution schemes. The solution obtained by the ADA-based

direct convolution scheme is used as the benchmark to check the relative errors of the various ap-

proximated DFT-based convolution schemes (with different φ and ε). Two frontiers are compared

in three different intervals of cumulative probability α: Ξ1 = [0.05, 0.06, · · · , 0.98, 0.99], Ξ2 =

[0.10, 0.11, · · · , 0.94, 0.95], Ξ3 = [0.10, 0.11, · · · , 0.89, 0.90]. Then we define extreme maximum er-

ror and average maximum error for each Ξ as follows:

Sup.λs
Ξ = sup

∀i∈N

{
max
∀α∈Ξ

[
λis(α)

]}
(4.3)

Ave.λs
Ξ =

1
|N |

{
max
∀α∈Ξ

[
λis(α)

]}
(4.4)

where N is the set of all nodes in the network. To mitigate the effects of network topology, the

RASP problem is solved by each convolution scheme ten times, each for a randomly selected

destination, and the above indexes are averaged over the the ten runs and reported in Tables 4.5

and 4.6.

The results show that the ADA-based convolution runs faster than the approximated DFT-

based convolution in most cases, with the exception of the case where φ = 0.5 and ε = 0.01.

The errors of the approximated DFT-based convolution decreases with φ and ε, suggesting that
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Table 4.5: Error indexes of the approximated DFT-based convolution scheme (using the ADA-
based direct convolution scheme with L = 100 as benchmark)

Accuracy Resolution of Ave.λs Sup.λs Ave.λs Sup.λs Ave.λs Sup.λs

ε Travel time φ α ∈ [0.05, 0.99] α ∈ [0.1, 0.95] α ∈ [0.1, 0.9]
0.1 1.15% 8.80% 0.55% 4.20% 0.43% 4.20%

0.001 0.2 2.76% 52.37% 1.30% 11.18% 0.97% 10.39%
0.5 6.67% 43.80% 2.97% 32.28% 2.08% 19.19%
0.1 7.75% 10.72% 3.47% 5.07% 2.20% 4.16%

0.01 0.2 7.31% 27.05% 3.11% 10.78% 2.02% 6.13%
0.5 6.23% 120.70% 3.21% 66.39% 2.14% 19.36%

Table 4.6: Computational performance of the approximated DFT-based convolution scheme with
different φ and ε. The performance of the benchmark case (the ADA-based direct convolution
with L = 100: CPU time - 0.90 seconds, Ave. |Γis

FSD| - 2.86 and Max. |Γis
FSD| - 16.6)

Resolution of CPU time Ave. Max. CPU time Ave. Max.
Travel time φ (second) |Γis

FSD| |Γis
FSD| (second) |Γis

FSD| |Γis
FSD|

Accuracy ε = 0.01 Accuracy ε = 0.001
0.1 2.69 1.91 7.43 3.71 2.04 7.00
0.2 1.27 1.97 7.86 1.92 2.25 7.71
0.5 0.71 1.98 7.86 1.64 2.59 10.14
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the choice of the benchmark is appropriate. In most cases, the distributions generated by two

schemes are close enough in the interval of α ∈ [0.1, 0.9], with the average errors less than

3%. The errors are larger in the interval where α is close to 1 or 0, clearly due to the fact that

the ineffective support points are removed in these intervals. Overall, the approximated DFT-

based convolution does not outperform its ADA-based counterpart, despite it has a much better

theoretical complexity.

We close this section by commenting on the choice of φ in the DFT-based method. A close

look at the results reveals that those large extreme maximum errors reported in Table 4.5 may

be caused by the inappropriate choice of φ. Specifically, φ = 0.5 or 0.2 may be too large for the

effective support range on some links in the network, which in turn leads to poorly represented

distributions (with a very few support points). To avoid this problem would require selecting

a φ small enough for all links. Unfortunately, this strategy is likely to be inefficient in a large

network where the support ranges on links vary significantly.

4.2 Pareto-optimal frontiers generated by higher order SD rules

This section tests the label-correcting algorithm implemented with different SD rules, namely,

FSD, SSD and TSD. Both computational performance and the solution quality (measured by the

generated Pareto frontiers) are compared. For convenience, we name the solution algorithm

corresponding to FSD, SSD and TSD rules as FSD-LC, SSD-LC and TSD-LC, where LC stands for

label-correcting. These algorithms are tested on four networks, the Chicago Sketch network (933

nodes and 2950 links, cf. Nie & Wu (2009)), and three grid networks: 40 × 40 (i.e. 1600 nodes

and 6240 links), 50 × 50 (i.e. 2500 nodes and 9800 links), and 60 × 60 grid network (i.e. 3600

nodes and 14160 links). Two different types of link travel time distributions are considered here:

Gamma distributions and Uniform distribution. The parameter setting of Gamma distributions

is exactly the same setting as in Wu & Nie (2009). For uniform distributions pij(x) = 1/(U − L),

L is fixed at 0 and U is randomly drawn from [3.5, 10].
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Table 4.7: The gaps between FSD, SSD and TSD Pareto-optimal solutions

FSD-SSD FSD-TSD
network Ave.λs Sup.λs Ave.λs Sup.λs Ave.λs Sup.λs Ave.λs Sup.λs

α ∈ [0.01, 0.3] α ∈ [0.3, 0.99] α ∈ [0.01, 0.3] α ∈ [0.3, 0.99]
Gamma distribution

CK 0.60% 17.15% 0.04% 2.00% 0.79% 15.11% 1.00% 13.45%
40×40 0.57% 20.29% 0.07% 2.03% 0.67% 15.08% 0.86% 20.04%
50×50 0.32% 14.68% 0.04% 1.71% 0.65% 14.27% 1.00% 16.11%
60×60 0.33% 22.35% 0.04% 2.15% 0.60% 18.03% 0.82% 19.10%

Uniform distribution
CK 0.36% 15.97% 0.01% 0.85% 0.38% 8.90% 0.72% 12.05%

40×40 0.18% 8.48% 0.02% 0.88% 0.38% 8.90% 0.35% 7.83%
50×50 0.13% 18.02% 0.02% 1.12% 0.12% 4.31% 0.20% 6.86%
60×60 0.10% 7.32% 0.02% 0.71% 0.13% 4.87% 0.19% 7.42%

First, the maximum difference between the FSD Pareto-optimal frontier and the SSD and TSD

frontiers for any α ∈ Ξ are obtained for any node i �= s as λis(α). Then, the so-called extreme

maximum error and average maximum error are defined for each Ξ as follows:

Sup.λs
Ξ = sup

∀i∈N

{
max
∀α∈Ξ

[
λis(α)

]}
(4.5)

Ave.λs
Ξ =

1
|N |

{
max
∀α∈Ξ

[
λis(α)

]}
(4.6)

To avoid the fluctuations associated with network topology, all algorithms are run ten times, each

for a randomly selected destination for each network, and the above indexes are averaged over

the the ten runs and reported in Tables 4.7. Note that two values of Ξ are considered in the table:

Ξ1 = [0.01, 0.3] and Ξ2 = [0.3, 0.99].

The results reported in Table 4.7 show that the gap between FSD and SSD optimal solutions

are small, especially when α ∈ [0.01, 0.3]. Within this range, the average maximum error is less

than 0.1% and the extreme maximum error is smaller than 3%. The discrepancy between FSD and

SSD frontiers is larger for smaller α. This is expected, because the SSD Pareto-optimal solutions

impose risk averse behavior. Thus, when travelers are more risk-prone (e.g. they are willing to

accept a small on-time arrival probability in exchange for a smaller time budget), the reliable
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Table 4.8: Computational performance when using FSD, SSD and TSD to identify non-dominated
paths

CPU time Ave. Max. CPU time Ave. Max. CPU time Ave. Max.
(second) |Γis

FSD| |Γis
FSD| (second) |Γis

SSD| |Γis
SSD| (second) |Γis

TSD| |Γis
TSD|

Gamma Distribution
CK 0.90 2.86 16.6 0.50 1.59 5 0.28 1.44 2

40×40 4.13 4.16 31.7 1.75 1.85 6.2 0.98 1.61 2
50×50 7.02 4.57 40.1 2.15 1.77 6.4 1.26 1.62 2
60×60 20.21 5.95 61 4.51 1.88 6.8 2.79 1.66 2

Uniform Distribution
CK 1.50 2.30 17.9 0.89 1.50 4.7 0.64 1.48 2

40×40 4.20 3.19 30.2 2.12 1.62 5.1 1.63 1.61 2
50×50 7.98 3.90 42.9 3.14 1.63 5.1 2.59 1.61 2
60×60 11.29 3.7 53.4 4.69 1.63 5.1 3.87 1.61 2

route generated by SSD tends to be more conservative. The difference between FSD and TSD

Pareto-optimal solutions is still larger, with the extreme maximum error is as large as 20% even

when α > 0.3. This indicates that the TSD frontier might be too conservative as an approximation

to FSD.

Table 4.8 shows SSD-LC is about twice as fast as FSD-LC on average. In some cases, the SSD-

LC is almost five times faster. The main reason is that the number of SSD-admissible paths is less

than that of FSD-admissible paths. Also, the speed of TSD-LC is slightly better than SSD-LC, but

the difference is barely noticeable in most cases. This is not a surprise given that the numbers of

average admissible paths generated by TSD and SSD are very similar.

The above results suggest that SSD-LC is a desirable approximation algorithm to finding

most reliable paths. It consistently reduces the CPU time by more than 50%, and the resulted

approximation errors are relatively small, especially for larger α. Also, SSD-LC tends to over-

estimate the time budget for a given on-time arrival probability, which is acceptable to risk-averse

travelers. In contrast, TSD-LC results in much larger approximation errors, while offering little

gains in computational efficiency.
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4.3 Summary

The findings from the numerical experiments are summarized as follows:

1. The basic DFT-based convolution scheme can produce highly precise solutions yet has high

computation overhead. The approximated DFT-based convolution scheme proposed in this

project improves the computational performance by removing “ineffective” support points,

which makes it more suitable to large applications.

2. The conventional all-at-once DFT-based convolution scheme does not necessarily outper-

form the one-at-a-time scheme proposed in this project, especially when paths have a large

number of member links. Moreover, it is difficult to apply the all-at-once convolution

scheme in reliable path finding without path enumeration.

3. Compared with all DFT-based convolution schemes, the ADA-based direct convolution

scheme strikes a better balance between accuracy and efficiency.

4. Reliable shortest paths generated by the SSD rule are good approximations to those based

on the FSD rule, especially when the desired on-time arrival probability is high. The CPU

time required to solve the reliable shortest path problem is reduced by a factor of two when

the SSD-rule is used. The TSD rule offers similar computational performance but leads to

much larger approximation errors.
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Chapter 5

CTA Bus Data: Acquisition and Analysis

This chapter summarizes the efforts to extract useful travel time information from existing

CTA AVL bus database, and analyzes the usefulness of these data for the purpose of travel time

estimation on different roads.

5.1 Background

The technical hardware for the bus probe analysis is a pre-existing bus status reporting system

developed by CleverDevices for the CTA technology department. Each of the 2000 operative

buses in the CTA fleet is equipped with an onboard computer and mobile networking suite. The

”brain” of the system is the Intelligent Vehicle Network (IVN) computer, originally developed to

automate the public address system on each bus.

To perceive which stop the bus is approaching, the IVN is equipped with a GPS locator. In an

extension of this existing functionality, the CTA in late 2008 experimented with adding a mobile

access router to each bus with the ability to transmit small-scale data reports to centralized

servers 1 in real time. Since the system went live in May 2009 (and for approximately six months

prior), every CTA bus has transmitted its location in geographic coordinates and instantaneous

speed to the CTA approximately every 30 seconds. In addition, operator, route, bus, and pattern

1Note: The CTA stores its regularly-collected BusTracker data in a centralized archive accessible only by CTA
personnel. The following sections give the procedure for pulling selected data from the archive, performing analytic
functions on that data, and mapping it for visual analysis. All code was developed using PL/SQL developer for use
on Oracle Server 10g, with the Oracle Spatial feature. Spatial columns, which cannot be exported to non-GIS data
types, are noted where used.
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identification numbers are retrieved for each record by a series of archive database triggers (they

are reported only when they change). Currently, the data is archived by the CTA technology

department indefinitely.

Because the location of the bus and the time between reports (technically referred to as

”polls”) is known continuously as a bus progresses on a route, the average speed of the bus

between two contiguous polls can be calculated as the distance traveled divided by elapsed time.

The segment between the two polls over which the speed is calculated is referred to as the poll

segment. Filtered and corrected to allow for peculiarities of bus traffic, the poll segment speeds

have been shown in limited validation testing to be a reasonable approximation of the traffic

speed on that segment of road.

The individual poll segments themselves can be mapped and analyzed, but for our purpose,

they must be matched to the nearest link in the CMAP network. Many poll segments may match

to the same link, in which case each poll segement is considered as an independent observation

of the speed on the matched link.

5.2 Data extraction

5.2.1 Data collected

The CTA archives the following information from each bus in the process of normal polling:

• The poll time in both date and time. This value is referred to as ”AVL Event Time”, with

AVL standing for Automatic Vehicle Locator. An AVL Event is essentially a poll of a bus

location.

• Identification numbers for individual poll, bus, operator, route, run, trip, pattern (a route

can be run in either direction, or sometimes with planned spurs) and garage of origin.

• Instantaneous speed - Experimentation (through riding CTA buses with handheld GPS and

a networked computer showing short-term polling) has demonstrated that the instanta-

neous speed is significantly inaccurate. The average poll segment speed calculated later
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has been demonstrated accurate and all future references to ”speed” will refer to segment

average speed.

• Latitude, Longitude, and Heading (standard GPS WGS ’83 format, north taken as 0 degrees)

at the moment the poll was collected - Although headings taken Chicago streets, which

largely conform to cardinal grid typically fall near 90, 180, 270, and 360/0 degrees, a bus

turning into a stop can generate a heading nearly perpendicular to its overall direction of

travel.

• A reading of whether the bus was on-route - A true/false response to whether a bus is

beyond set threshold of distance from the last route logged in.

An archive exists of this information for all polls dating from approximately January 1, 2009.

This archive table is ordinary Oracle Database 10g, without any Spatial columns, meaning that

this data can be directly exported to text and comma delineated formats.

5.2.2 Programming structure

The task of first calculating, then matching average bus speeds to network links is accom-

plished by a BUS SPEED package (see Appendix A). In PL/SQL parlance, a package is a collec-

tion of functions and procedures held together for convenience. A package consists of a declara-

tion, which lists the contents, and a body, which contains the full coding for each sub-program

in the package.

A package cannot itself be executed. Rather, it is a vessel for holding other executable code.

Therefore, the package BUS SPEED contains a procedure BUS SPEED.MAIN GO which serves

to call all the other sub-programs in the package in a specific order.

A query calls BUS SPEED.MAIN GO with three pieces of input. First, the user inputs either

’SRA’ or ’NU’ to indicate which network the poll segments should be matched to. ’SRA’ indicates

the City of Chicago Transportation Department’s Strategic Arterial Network, which was used for

testing for simplicity. Future networks might include ’CTA’ for network based around CTA bus
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lines.

BEGIN BUS SPEED.MAIN GO(’NU’); END;

– This query calls for matching to the CMAP network for the last full 15-minute period.

BEGIN BUS SPEED.MAIN GO(’SRA’); END;

– This query calls for matching to the strategic arterial network for the last full 15-minute
period.

The user can input the start time and end time for the query in SQL form. If no dates are

entered, the function FN LAST 15 will find the last full 15-minute period (at the current time)

and assign the beginning and end times of that period as the ends of the query. For example, if

the procedure was called at 12:17, the query would begin at 12:00 and end at 12:15. A 15-minute

period has been demonstrated as the shortest period in which bus coverage of the network can

be maximized, any shorter and the number of unmatched segments increases.
BEGIN BUS SPEED.MAIN GO(’NU’,to date(’09-11-2009 17:00’, ’mm-dd-yyyy hh24:mi’
),to date(’09-11-2009 18:00’, ’mm-dd-yyyy hh24:mi’)); END;

– This query calls for matching to the CMAP network for the period between 5:00 and 6:00
p.m. on Friday, September 11, 2009.

• BUS SPEED.MAIN GO calls five other procedures, though no query will require it to call

all of them:

• BUS SPEED.BUILD SPEED TABLE - Constructs a table POLL SPEED with speed, geogra-

phy, and identification for each poll segment.

• BUS SPEED.CLEAN SPEED TABLE - Removes irrelevant or inaccurate polls.

• BUS SPEED.NU MATCH - Uses a function FN NU MATCH to attempt to retrieve a match-

ing CMAP link ID number for every poll segment.

• BUS SPEED.SRA MATCH - Does the same as the previous procedure for the strategic ar-

terial segments.
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• BUS SPEED.CONGESTION SCORE - Assigns a congestion score based on segment aver-

ages. This additional functionality allows for easy identification of atypical momentary

congestion but removes the ability to compare the performance of different segments.

‘SRA’ Specified ‘NU’ Specified 

BUS_SPEED.BUILD_SPEED_TABLE(‘start’,‘end’)

BUS_SPEED.CLEAN_SPEED_TABLE(‘start’,‘end’)

BUS_SPEED.NU_MATCH BUS_SPEED.SRA_MATCH 

BUS_SPEED.CONGESTION_SCORE

BUS_SPEED.MAIN_GO(‘network’,‘start’,‘end’)

Figure 5.1: The progression of BUS SPEED based on input variables

At peak hour, one 15-minute query using the BUS SPEED package takes approximately 2

minutes to run. A stepwise log is kept for each run using the procedure BUS SPEED.APP LOG

INSERT and can be accessed even while the program is executing.

5.2.3 Constructing POLL SPEED

BUS SPEED.BUILD SPEED TABLE constructs POLL SPEED in two phases. First, data are

pulled from the archive into an intermediate table POLL DATA INNER. Then, the speed calcula-

tions are performed, and the results are recorded in POLL SPEED. POLL DATA INNER has no
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Spatial columns. The POLL SPEED table has a Spatial column POLLSEG which records the poll

segments as line segment geometries.

The POLL DATA INNER table contains the following data extracted from the archive:

• Identification numbers for bus, operator, route and pattern, direction and deviation of the

bus

• Latitude, longitude, and heading at the poll

• Latitude, longitude, and heading at the previous poll - Because Oracle cannot perform op-

erations up and down in the table (one row against another row), but only across a row

from column to column, the location and heading information is lagged by one row and re-

ported in separate columns LAST LATITUDE, LAST LONGITUDE, and LAST HEADING

2.

• Time of poll and the time of the last poll.

• The time difference between the two polls, the elapsed time used in calculating poll segment

average speed.

LAG(AVL EVENT TIME, 1) OVER (PARTITION BY BUS ID ORDER BY AVL EVENT TIME)
LAST AVL EVENT TIME

– This excerpt from BUILD SPEED TABLE calls for a new column called LAST AVL EVENT
time consisting of the column AVL EVENT TIME partitioned by BUS ID then ordered
chronologically, shifted downward by 1 row, so that each row of LAST AVL EVENT TIME
contains the contents of AVL EVENT TIME from the row directly above (see below).

POLL SPEED consists of all of the data in POLL DATA inner with the following additions:

• A Spatial function computes the distance between the current and last latitude and longi-

tude, the distance the bus traveled in the elapsed time calculated above, in units of feet.

2Note: Lagging is a powerful tool within Oracle, and one that is somewhat unique to the software. Lagging, or
the built-in LAG function in PL/SQL, takes an entire specified column and shifts it down (or up, using the LEAD
function) by a specified number of rows. This can then be renamed as a separate column.

CCITT 52



Chapter 5. CTA Bus Data: Acquisition and Analysis Nie et al.

• The speed is then calculated by calculating the ratio of distance to speed, using units of

miles per hour.

• The segment is saved as a Spatial line segment geometry. These columns cannot be ex-

ported in text or comma-delineated formats, meaning the table cannot be exported without

first having these columns removed. The Spatial columns record the form of the segment

geometrically in Spatial format, which can be matched to network links recorded in the

same manner.

It is important to note that the POLL SPEED table includes only segments between 5 and 70

seconds long (to remove inaccurate records from faulty equipment) as well as selecting out polls

recorded at zero latitude and longitude, which sometimes occur when the bus first starts.

5.2.4 Cleaning the speed table

When built, the POLL SPEED table initially contains approximately 50,000 records per 15

minutes of query, each representing a poll segment (there are the same number of poll segments

as polls, each segment is identified by its endpoint - see below). The remaining steps, cleaning

and matching, remove a large number of those records either because they are considered irrele-

vant, because they are inaccurate, or because they cannot be matched to a link in the applicable

network.

The cleaning step is accomplished by the procedure BUS SPEED.CLEAN SPEED TABLE,

which deletes records from POLL SPEED meeting the following criteria:

• The first 90 seconds of data - When the AVL EVENT TIME column was lagged during

the creation of POLL DATA INNER, the first poll of a time period (noon in the example

query 12:00 to 12:15) would not have an associated previous poll and therefore could not

be included in a segment. This would cause that poll segment to be missed in the survey

altogether. To correct for this, BUS SPEED.MAIN GO actually asks for 90 seconds of data

before the requested start of the query. Because the package is built to run repeatedly every
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15 minutes, that 90 seconds would be double-counted (once by the prior 15 minute period

it is actually in, and once by the next one). To correct this, the first 90 seconds of data are

deleted from POLL SPEED.

• Polls where the segment average speed fell above 65 miles per hour - CTA buses are speed

governed to approximately 60 mph (depending on the model of the bus). There are sit-

uations where a bus could exceed this speed, specifically downhill runs on expressways

under good conditions, but a bus exceeding 65 mph is assumed an error. This does not

necessarily mean the bus is moving that fast; it is more likely either that polls were taken

too close together in time (partially corrected by the 5-second requirement above) or that

the GPS incorrectly located the bus by some small degree.

• Polls where the bus did not move for approximately 90 seconds - While it is possible that

a bus remaining in precisely the same location for three or more polls is stuck in traffic,

vehicles in heavy traffic typically creep slightly over that period. The movement of even

a small creep can be registered by the on-board GPS, so a bus which is recorded as not

having moved for 90 seconds is assumed to be stationary, usually parked. This typically

happens for one of several reasons:

– The bus is at a terminus and is waiting to begin the return trip (typically takes 3-5

minutes)

– The bus is engaged in a long relief stop and is waiting for a new driver at a shift

change (can take up to 10 minutes)

– The bus is trapped in a stop by traffic, the effects of which would not be felt by a car

at the same location and moment.

– The bus is parked at a garage.

At the conclusion of these steps, which usually amount to approximately one fifth of the

initial total number of polls, the POLL SPEED table is complete. It contains the balance of the
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relevant poll segments over the queried time period.

5.2.5 Matching poll segments with network links

At this point SpatialConsole (and potentially ArcMap) can simply plot the poll segments.

They follow the street grid and could theoretically be selected for metadata such as average

speed. Such a map, however, is both complex (since overlapping speeds may vary widely) and

imprecise (since outliers are reported equally with ”typical” results). To make a usable color-

coded speed map, the poll segments must be aggregated by matching with a simpler network.

BUS SPEED is currently capable of matching the poll segments with two sets of network

links. One is the City of Chicago’s Strategic Arterial Network, also referred to as SRA segments.

Because the SRA network does not include many major streets (Belmont Avenue, for example), it

does not have the breadth to show the much specific information. It is, however, simple enough

to experiment with and includes all relevant metadata (street name, endpoints, direction, number

of bus stops, etc.)

The second network is the CMAP network used by our previous project. Maps are possible

for this network as well. However, the lack of street name and endpoints for the segments

prevents full efficacy of this network. Prior difficulties obtaining link direction for the CMAP

network were addressed with the creation of the function FN SEG DIR to assign angle, bearing,

and direction to line segments (see Appendix B). Samples of both maps are provided on in the

following page.

Figures 5.2 and 5.3 are sample maps of each network to which BUS SPEED can match its poll

segments. The time period used for each map is the same, from 5:00 to 5:15 p.m. on Wednesday,

August 12, 2009.

This time period is representative of typical weekday evening peak hour conditions, and took

place during the three-day weekday period used to determine base average speeds for congestion

score assignment.

Grey indicates that no poll segments were matched to a link. Red indicates congested flow
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and green indicates free flow, with yellow and orange in between. (see Section ??)

In addition to the CMAP network, it is also possible to match the poll segments to a smaller

subset of Chicago streets identified by the City of Chicago Transportation Department as strategic

arterial roads.

While this network is sparser and leaves out many important arterial roads citywide, it is

simple enough for experimentation and easier to read to identify citywide traffic trends.

This network was used for all testing of the BUS SPEED package.

Both networks are matched by the same process. A pair of functions in BUS SPEED, FN SRA MATCH

and FN NU MATCH, are passed the location of a poll segment by matching procedures, BUS SPEED.SRA MATC

and BUS SPEED.NU MATCH. The function receives the location of a poll segment and attempts

to return the number of a matching link, based on the following criteria:

• The closest link - The Spatial function SDO NN finds the nearest neighbor in Spatial terms,

using the Spatial columns in both the POLL SPEED table and the network link table. It is

believed that this is done by distance from midpoint-to-midpoint, though the documenta-

tion is not clear in this regard and the function is built into Spatial. SDO NN actually finds

a list of closest neighbors, which is then pared down to the closest which meets the other

criteria.

• The link is within 100 meters (300 feet) of the poll segment - This prevents poll segments in

outlying locations off the network from being assigned randomly to border segments.

• The current and previous headings are consistent with the direction 3 of the link - This is a

crucial step which serves two important purposes. First, each street in a spatial network is

represented by two parallel lines, one for each direction on that street. Because congestion

can differ across the directions, poll segments must be matched to a specific side of the

3Note: The directional matrix used to match the poll segments is defined so that North and South are very narrow
(20 degrees wide) while East and West are very wide (approximately 70 degrees wide) with the remainder given to
the non-cardinal directions). The reason for this is that diagonal streets in Chicago are annotated either as East-West,
Northeast-Southwest, or Northwest-Southeast depending on their angle, but none is annotated as North-South. To
ensure that the maximum number of diagonal segments are matched, those directional ranges are atypically wide.
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Figure 5.2: NU CMAP sample map

street by heading. Also, buses cross intersections and sometimes turn. A bus which reports

in an intersection could be matched to a segment on the perpendicular street by mistake.

A bus which turns is not truly reporting conditions on either street, and must be ignored.

Checking both the instantaneous and previous headings with the link directions ensures

that these conditions are met.

CCITT 57



Chapter 5. CTA Bus Data: Acquisition and Analysis Nie et al.

Figure 5.3: SRA sample map

At the conclusion of matching, a MATCH ID column in POLL SPEED contains either the

ID number of a matching network link (from either network) or a NULL if the segment can-

not be matched. Approximately 50% of the initial poll segments successfully match (to the

CMAP network, 25% match to the less-comprehensive SRA network). BUS SPEED.MAIN GO

and BUS SPEED itself are now complete.
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5.2.6 Converted to link travel time

Up to now we have described how to generate bus poll segments and match them with CMAP

links. Effectively, each bus poll segment, when matched with a link in the CMAP network,

provides an observation of the average speed on that link at the polling time. To facilitate a pilot

study of these data, CTA incorporated the above extraction procedure in their daily database

operation between 10/09/2009 and 11/13/2009, which produces a bus poll segment speed table

with about 28 million records. The speed data in this table are then converted to travel times

using the following procedures:

1. Increase the observed average bus speed by 5 mph to make up for the difference between

bus and car, based on the recommendation in the literature (Pu 2008).

2. Take the average of the poll start and end time as the nominal time of measurement.

3. Calculate the average travel time by dividing the length of the link by the inflated bus poll

speed.

The processed link travel time data are stored in a MYSQL database that also hosts the GCM

data.

Bus data usually have poorer temporal coverage compared to the loop detector data. A

location may only have a few valid bus speed observations for a given day, while the loop

detectors usually record travel speeds once per 5 minutes (288 data points per day). To resolve

this issue, a postprocess is introduced to generate the entire travel time profile at each location

that have bus observations. We first divide a day into 288 5-minute time periods. For each time

period i, if bus travel time observations exist, then the average of all observations are used as the

nominal travel time for the period. If not, the travel time is obtained by ti = λti−1 + (1 − λ)t0.

where ti is the nominal travel time for period i and t0 is the free flow travel time. In this study, λ

is set to 0.9.
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5.3 Travel time data collected by CTA bus probes

We now analyze the link travel time data generated from the above procedure. The analysis

is focused on a specific weekday, October 15, 2009.

5.3.1 Travel times on freeway and expressways

CTA bus routes cover sections of freeways and expressways in the area, such as Lake Shore

Drive and I-290 (near downtown). For these roads, travel time data from both the loop detectors

and CTA bus probes are available. In total, there are over three hundred such road links, from

which we selected a small sample, including three links from Lake Shore Drive and two from

I-290, to verify the quality of the bus data. The locations of these five links are shown in Figure

5.4.

The link travel times recorded by loop detectors and bus probes on a specific weekday (Oc-

tober, 15, 2009) are compared in Figures 5.5 - 5.9. From these figures, we can see that in most

cases both sets of travel time data reflect the morning peak traffic congestion, although bus data

evidently have much more noises. For the two links on Lake Shore Drive (17842 and 13210),

the recorded travel times from loop detectors and bus probes are remarkably consistent during

the peak periods. For links 1969 and 3025, bus data did capture peak periods but significant

differences exist in the overall travel time profile between the two data sets. The bus data on link

7081 seem problematic. First note that the bus coverage is poor at this location. Second, for those

limited readings, the data suggest that the bus consistently runs 10 times slower than the traffic

during much of the off periods. We postulate that this problem is likely to be caused by link

mismatch (matching a non-freeway link to a freeway link).

When there is no traffic congestion, the travel times recorded by loop detectors are smaller

than those recorded by bus probes (remember we have inflated the observed bus speeds by 5

mph when we generated our bus travel time database). This observation suggests that (1) buses

usually run at speeds close to or lower than the free flow travel speed (speed limit) but other
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Link 30235

Link 17842

Link 13210

Link 1969

Link 7081
I-290

Lake
S
hore

D
r

Figure 5.4: Locations of the selected links belonging to Lake Shore Drive and I-290

vehicles travel at speeds higher than the speed limit, when there is no traffic congestion; and (2)

the speed difference between bus and car is likely to be more than 5 mph in the free flow traffic.

When the road is congested, however, every vehicle, including buses, is delayed and almost

travels at the same speed, as shown in Figures 5.7 and 5.5. In summary, with sufficient coverage,

bus data may capture heavy congestion on freeway and expressway but proper adjustments must

be made in the other conditions.
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Figure 5.5: Travel times of link 17842 located in Lake Shore Drive on 10/15/2009, recorded by
loop detectors and bus probes
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Link 30235, from 2009-10-15 00:00:00 to 2009-10-15 23:59:55
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Figure 5.6: Travel times of link 30235 located in Lake Shore Drive on 10/15/2009, recorded by
loop detectors and bus probes
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Figure 5.7: Travel times of link 13210 located in Lake Shore Drive on 10/15/2009, recorded by
loop detectors and bus probes

CCITT 64



Chapter 5. CTA Bus Data: Acquisition and Analysis Nie et al.

10/15 00 10/15 05 10/15 11 10/15 16 10/15 22
0

1

2

3

4

5

6

7

8

9

Time

Tr
av

el
 ti

m
e 

(m
in

)
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Figure 5.8: Travel times of link 1969 located in I-290 on 10/15/2009, recorded by loop detectors
and bus probes
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Figure 5.9: Travel times of link 7081 located in I-290 on 10/15/2009, recorded by loop detectors
and bus probes
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5.3.2 Travel times on arterial and local streets located in suburbs

In this section, 12 links on six arterial roads in the north, west and south suburbs of Chicago

are examined. For each arterial road, a pair of links (in opposite directions) are selected. In the

north, we select West Montrose Avenue and West Lawrence (Figure 5.10(a)). In the west, West

Madison Street and West Roosevelt Road are selected, both of which are parallel to the links of

I-290 studied in the last section (Figures 5.11(a)). In the south, West 47th Street and South Halsted

Street are selected (Figure 5.12(a)). The lengths of the selected links are no shorter than half miles

in order to reduce the impacts of bus stops and signals.

The travel time profiles are given in Figures 5.10(b), 5.11(b) and 5.12(b). Distinctive morning

peak periods can be observed from the plots for links 37698, 37685, 34137, 40767, 22269, 39545

and 41457. We can also see evening peak periods from the data on links 40767, 10907 and 39545,

and the mid-of-day peak period from the data of links 37698, 39545, 41455 and 18036. However,

no typical pattern emerge from the data for links 28744, 37695 and 37658.

For the purpose of comparison, four shorter links on local streets in these suburbs are also

examined. The locations of links are shown in Figure 5.13(a), and the recorded travel times are

reported in Figure 5.13(b). As expected, while some plots do reveal the peak-time pattern (e.g.

link 1891), the quality of the data degrades in general as the noises and lack of temporal coverage

become worse due to the short link length.

To summarize, for long links located in suburbs, the data from bus probes reasonably reflect

congestion patterns. This is expected because buses can travel a relatively long distance on such

links without disruptions from stops and intersections. Also, note that the demand for bus

services in the suburb area is relatively low compared to the downtown area, which helps reduce

delays associated with stops (note that these delays cannot be excluded from the data).

5.3.3 Travel times on arterial and local streets in Downtown Chicago

We examine a sample of streets located in Downtown Chicago. In total four links on Michi-

gan Avenue (a major arterial street) and two links from two minor local one-way streets (South
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(b) Recorded link travel times

Figure 5.10: Locations and travel times of links 37695, 37658, 37698 and 28744 located on W.
Montrose Ave. and W. Lawrence Ave. on 10/15/2009
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(a) Locations of selected links
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Figure 5.11: Locations and travel times of links 34137, 40767, 7060 and 25458 located on W.
Madison St. and W. Roosevelt Rd. on 10/15/2009
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(a) Locations of selected links
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Link 41457, from 2009-10-15 00:00:00 to 2009-10-15 23:59:56
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Figure 5.12: Locations and travel times of links 39545, 25651, 41457 and 41455 located on W. 47st
St. and S. Halsted Rd. on 10/15/2009
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(b) Recorded link travel times

Figure 5.13: Locations and travel times of links 1342, 1891, 26127 and 33864 on 10/15/2009
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Figure 5.14: Locations of selected links in Chicago Downtown

Federal Street and South Dearborn Street) are selected. The location of selected links are shown

in Figure 5.14. The recorded travel times are reported in Figures 5.15(a) and 5.15(b).

Two observations can be made from Figures 5.15(a) and 5.15(b). First, travel times experienced

by buses are roughly 3 - 4 times higher than the free flow travel time on these links throughout the

day. This is likely due to frequent bus stops and intersections that prevent buses from operating

at normal speeds. Second, the noises in the data are so strong that it is very difficult to distinguish

peak and off-peak periods. Hence, using these data for the purpose of travel time estimation may

be inappropriate.

5.4 Summary

In this chapter, we present and test the methodology used to extract travel time data from

archived bus AVL data. We use bus poll segments as “virtual speed detectors” for the matched

links in the CMAP network. Link travel times are then obtained through a simple postprocess.

Our main findings from examining a one-month sample of CTA bus travel time data are:

• The bus travel time data have strong correlations with those obtained from loop detectors on
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Link 42372, from 2009-10-16 00:00:00 to 2009-10-15 00:00:00

(a) Recorded link travel times of links located in Michigan Avenue
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Link 2569, from 2009-10-15 00:00:00 to 2009-10-16 00:00:00

(b) Recorded link travel times of links located in minor local streets

Figure 5.15: Travel times of links located in S. Michigan Ave., S. Dearborn St. and S. Federal St.
on 10/15/2009
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freeways and expressways. While the speeds of buses and cars do seem to have significant

discrepancies under free-flow/light-congested conditions, they tend to agree with each

other much better when congestion is heavy.

• The data on arterial and locals street cannot be directly validated. However, they typically

contain larger noises, likely resulted from the disruptions of bus stops and intersections.

• In general, the data quality is better on longer streets than shorter streets, and better on

streets located in suburbs than those in the downtown area. On the long streets in suburbs,

the bus data are able to reveal distinctive peak and off-peak periods in many cases.

CCITT 74



Chapter 6

Travel Reliability Survey

The travel reliability survey, which contains 22 questions (see Appendix), intends to collect

three types of data: demographical and basic travel-related information, reaction and attitude to

travel reliability, and opinions about potential reliable route guidance products. The target popu-

lation is students and workers living in the Chicago Metropolitan area. We exclude non-workers

because they are deemed as having more flexible schedules and hence being less concerned about

travel reliability. To ensure high response rate, a professional web survey company uSample inc.

was hired to recruit responders. The research team designed the survey using Survey Monkey

and the link to the survey was provided to uSample. The company then reached out to respon-

ders from various online sources, including social media, hand-picked affiliate sites, and web

advertisements. It took less than a week to obtain a sample of 228 filled surveys, of which 220

have consistently answered all the questions, while 8 dropped out after question 2 primarily be-

cause they do not drive. In the following, the survey results from each of the three categories are

presented and analyzed.

6.1 Demographical and basic travel-related information

6.1.1 Demographical information

Overall, the majority of the people who have filled the survey were in the age range from 25

to 60. Specifically, 39% were in the age range 25-40, and 35.5% were in the range 40-60. About

60.5% of responders are females (see Figures 6.1(a) and 6.1(b)). Of all the responders about 12.7%
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have only completed high school, 32.3% have completed college or technical school and 15.5%

were shown to have completed graduate school (see Figure 6.1(c)).

Survey Reponse: Gender

Male 39.5%

Female 60.5%

(a)

Survey Response: Age

0-25 18.6% 25-40 39.1% 40-60 35.5% 60-75 6.8% 75 or older 0.0%

(b)

Survey Reponse: Educational Background

Completed elementary school
0.5%

Some high school 2.3%

High school graduate 12.7%

Some college or technical
school 31.4%

College or technique school
graduate 32.3%

Some graduate school 5.5%

Completed graduate degrees
15.5%

(c)

Figure 6.1: Distributions of gender, age and education background of the motorists who partici-
pated in our survey
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6.1.2 Basic travel-related information

97.3% indicated that there is a public transportation system that runs through their neigh-

borhood (see Figure 6.2(a)). However, less than a half (46.7%) of the people felt that the public

transportation system is reliable, and only 37.1% of responders use public transportation for

commute.

6.2 Reaction and attitude to travel reliability

6.2.1 Current methods used by commuters

Our responders heavily rely on either the past experience or the internet for route guidance

(see Figure 6.3): 57.3% have indicated that they obtain driving direction from Google/Yahoo, and

58% said that they make route choice based on their own experience. In addition, 30.5% of the

responders use traffic reports provided by radio/TV, and only 23.6% said they rely on the in-

vehicle navigation system. We note that the majority of in-vehicle navigation users are from the

age group 25-40, which is expected as the technology is relatively new. Moreover, the majority of

the responders seem to be happy with their current routing methods (see Figure 6.4).

6.2.2 Importance of travel time reliability

It is somewhat surprising that the responders perceive “arriving on time” as important for

almost all hypothetical trips given in the question, see Figure 6.5. The lowest rating is for “attend-

ing a party”, which still receive an average importance rating of 3.5/5. Maybe “being on time ”

is perceived as such good etiquette that the responders tend to inflate their stated importance.

Nevertheless, significant differences do exist between different trips. The most important trip

that has received highest ratings is job interview (4.74). Going to work or airport for a flight are

the second most important events, both with rating slightly over 4.5.

An overwhelming majorit of the responders, over 80%, said that time is the most important

factor in their route choice. At the second place is travel reliability, which influences route choices

among more than 40% of all responders. The other variables are cost (31.5%), comfort (24.7%),
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Public Transportation Availability

Yes 97.3%

No 2.7%

(a)

Is Public Transportation Reliable?

Yes 46.7%

No 53.3%

(b)

Figure 6.2: Access to public transportation and its reliability

safety (21.0%), and emission (1.4%), see Figure 6.6. It is interesting to notice that more responders

concern comfort than safety, which seems counter-intuitive. A possible explanation is that life-

threatening accidents are rare events whereas comfort is a daily experience.
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Current Methods of Routing Routes

Google Maps/Yahoo Maps
57.3%

In-vehicle Navigation Systems
23.6%

Traffic Reports (radio station or
T.V. news) 30.5%

Past Experience 58.6%

Figure 6.3: Distribution of the current methods of routing employed by commuters

Satisfactory with Current Routing Method

0

20

40
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80

100

120
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Figure 6.4: Distribution of the satisfactory of commuters with current routing method

Importance of Arriving On-time

0
0.5

1
1.5
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2.5
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Go to work (or
go to school)

Go to a
doctor’s

appointment

Go to the
airport to take

a flight

Go to a job
interview

Go to theater Go to a friend’s
party

Figure 6.5: Importance of arriving on-time for various trips with different purposes
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Factors that Affect Current Route Choice the Most
Travel time 81.3%

Cost (fuel consumption,
the availability of vehicle)
31.5%

Reliability 40.2%

Safety 21.0%

Comfort and convenience
24.7%

Emission and energy
conservation 1.4%

Figure 6.6: Distribution of the factors which impact the route choice most

6.2.3 Travel time budget

Most commuters indicated that they would plan more time than normally required for im-

portant trips. When the commuters were faced with a question on how much time they would

budget for a trip that would take on average of 30 minutes and 60 minutes with traffic to the

airport for an 8:30 AM flight, 68.5% indicated that they will budget more than 60 minutes for the

trip. Overall, 94.5% indicated that they will budget at least more than 35 minutes for the trip.

When given question on how much they will budget for daily trips to work that would take 30

minutes on average (Question 15), 85.3% indicated that they will budget at least 35 minutes or

more for the trip, while 49.8% indicated that they will budget at least 45 minutes or more, i.e.,

50% longer than the mean travel time. 12.8% answered that they will budget more than an hour

for the trip (see Figure 6.7). These responses clearly verify the behavior assumption made in our

reliable routing model: that people would budget a buffer time to ensure a high probability of

on-time arrival.

Moreover, 39.7% of all responders indicated that the issue of travel time reliability concerns
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them almost every day. When asked about what type of reliability information they prefer, 37.4%

chose the average trip time and the standard deviation, and 20.4% chose the histogram plot of

travel times.

Finally, when the commuters were asked about “what do you do to ensure you arrive on

time?”, the highest average rating (3.89 out of 5) was given to “reserving more time than needed”

and the second highest rating (3.24 out of 5) was given to “getting real time traffic information”.

How Much Time Would You 'Budget' For Your Trip?

0
10
20
30
40
50
60
70
80
90

3.7% 11.0% 35.6% 37.0% 12.8%

15 - 25 minutes 25 – 35 minutes 35 - 45 minutes 45 – 60 minutes More than 1 hour

Figure 6.7: Time budget for trips

6.3 Opinions about reliable route guidance products

In the survey, the responders are given a hypothetical scenario where they have access to a

reliable route guidance product, CTR, which may suggest a “reliable” but unfamiliar route for

their work trips. The responders are then asked how much time savings produced by CTR would

induce them to switch routes. As shown in Figure 6.8, about 40% of all responders require 10-

20% or less time savings to take the new reliable route. About 35% of commuters require 30% or

more. Most users would not care the difference if the time saving is no greater than 10%.

When asked about the running time of CTR, most people indicated that they are either neu-

tral or satisfied with the fact that CTR needs about 30 seconds to 60 seconds to generate a reliable

route guidance. We note that a commercialized product would achieve a much better computa-

tion speed through various computing technologies.
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Finally, many people would like to receive a reliable route guidance product as an added-on

function in Google or Yahoo maps (48.7%). Many others would like to have it on their smart

phones (37.7%) or in-vehicle navigation systems (30.7%). The details are given in Figure 6.10.

How Much Time-Saving Would Induce You to Change Your 
Routing Based on CTR?

0
10
20
30
40
50
60
70

2.8% 7.5% 30.8% 23.8% 21.0% 14.0%

1-5 percent
time saving (up

5-10 percent
time saving (up

10-20 percent
time saving (up

20-30 percent
time saving (up

30-50 percent
time saving (up

I would always
stick to the

Figure 6.8: Expectation of time saving by using CTR in route guidance

How Acceptable is the Running Time for CTR?

0
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40

50
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80

totally unbearable somewhat
unbearable

neutral somewhat
acceptable

totally acceptable

Figure 6.9: Evaluation of CTR running time

6.4 Summary

The preliminary findings from the survey are summarized as follows:

• Travel reliability is found to be the second most important decision variable in route choice,

next only to travel time. Over 40% of all responders believe that their route choices are

affected by travel reliability.
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Where Would You Like to Access the CTR?

A stand-alone software
application that can be
installed on my PC or MAC
26.4%

As an add-on function in
Google Maps/Yahoo Maps
Application 48.1%

I-phone or other Smartphone
application 37.7%

In-vehicle GPS-based
navigation system 30.7%

Figure 6.10: Expectation of CTR in the future application

• The survey results confirm that commuters do budget a buffer time to ensure a high prob-

ability of on-time arrival for important trips, and that they perceive this as the most impor-

tant approach to improving reliability.

• Reliable route guidance products need to generate more than 10% time savings in order to

be attractive.

• The most desirable commercialization forms are to integrate the technology into the existing

Internet-based map services (such as Google/Yahoo Maps) and to develop application for

smart phones.
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Chapter 7

Conclusions

We first summarize what have been accomplished in this project, and then set possible direc-

tions for further research.

7.1 Main results

This project further develops the reliable routing algorithm in two aspects. First, we proposed

a new convolution method based on Discrete Fourier Transform (DFT). While the DFT-based

convolution method can produce highly precise solutions, it significantly increases computation

overhead. Compared with DFT-based convolution schemes, the direct convolution scheme based

on adaptive discretization seem to strike a better balance between accuracy and efficiency, partic-

ulary for large-scale applications. Second, we employ the higher order stochastic dominance (SD)

rules to solve the reliable routing problem. We show that the higher order SD rules can reduce the

number of non-dominant paths, which promises to improve the computational efficiency. Unlike

the existing heuristic methods, the proposed approach guarantees that all enumerated paths are

FSD-admissible. Our results indicate that the optimal solutions solved with the second-order

stochastic dominance (SSD) are close to those solved with first-order SD, or FSD. On the other

hand, the CPU time required to solve the reliable shortest path problem is roughly reduced a

factor of two when the SSD-rule is employed.

The project tests the idea of using the Chicago Transit Authority (CTA) buses as traffic probes.
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A prototype PL/SQL code was developed to extract travel speed information from AVL bus data

and to match them to links in the CMAP network. In total, a sample of about one month of all

matched bus data (about 28 million records) is generated and analyzed in the study. The results

indicate that (1) the bus travel time data have strong correlations with those obtained from loop

detectors on freeways; (2) the data on arterial and locals street typically contain larger noises;

(3) the arterial data quality is better on longer streets than shorter streets, and better on streets

located in suburbs than those in the downtown area; and (4) the bus data tend to overestimate

travel time under free flow or light congestion conditions, but better represent the reality in the

presence of heavy congestion. Many of these findings are expected. Note that the noises in the

arterial data are likely due to the impacts of bus stops and intersections, which are clearly larger

when the link is short and/or located in the downtown area. The lack of sufficient data coverage

represents another obstacle. Results indicate that many arterial links, although served by CTA

bus routes, only have a few observations each day, which is far from enough to create a reliable

daily travel time profile. Finally, even when they are not disrupted by stops, intersections and

congestion, buses and cars are likely to travel at quite different speeds on average. Our results

indicate that under free flow condition the speed difference between buses and cars is likely to

be well over 5 mile/hour in the area.

We conduct a survey designed to understand travelers’ reaction and attitude to travel reli-

ability and their opinion about reliable route guidance products. Through a professional web

survey company, we obtained a sample of 220 valid responses from students and workers in the

Chicago Metropolitan area. We found that travel reliability is the second most important decision

variable in route choice, next only to travel time. The survey results also confirm that commuters

do budget a buffer time to ensure a high probability of on-time arrival for important trips, and

that they perceive this as the most important approach to improving reliability. However, to be

attractive to most travelers, a reliable route guidance has to generate at least 10 - 20% time sav-

ings. Finally, the most desirable forms to commercialize the reliable routing technology include
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integrating it into the existing Internet-based map services (such as Google/Yahoo Maps) and

developing smart-phones-based applications.

7.2 Future work

Our analysis and experiments suggest that the DFT-based convolution method is not as com-

putationally competitive as its theoretical complexity promises due to several implementation

issues. The first issue was discussed in Section 3.3, which has to do with the requirement of

equal discrete support intervals. Because our problem often involves convoluting two distri-

butions with quite different ranges, this requirement dramatically increases the computational

burden. The second and more important issue is that checking stochastic dominance is not as

straightforward in the frequency domain as in the time domain. Consequently, the distributions

have to be transformed to the frequency domain to compute convolution and then transformed

back the time-domain to check dominance. Note that these transformations will take place when-

ever a path is augmented by one link, which is highly inefficient. The ideal strategy would be

always performing the convolution in the frequency domains, and only transform back to the

time domain after all path travel time distributions are obtained. To avoid path enumeration,

however, it requires developing the stochastic dominance relationship in the frequency domain.

Fully realizing the potential of DFT-based method is an interesting direction for further research.

The use of CTA bus data in support of reliable routing is worth of further investigations.

Note that our current analysis only considers time-of-day travel time profiles. To be used in the

reliable routing, these data have to be aggregated to generate the travel time distributions for

each period (e.g, morning rush hour, mid-of-day, etc). We expect that the data aggregation is

likely to reduce random noises and the relationship between bus and loop detectors can be more

easily constructed in the form of travel time distributions (instead of daily travel time profile).

Furthermore, validation studies are needed for arterial links that are short and/or located in the

downtown area. The key is to obtain data on real traffic conditions through other sources, such
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as GPS-equipped passenger cars and trucks.

This study provides only a preliminary analysis of the survey results. It is interesting to

develop some econometric models in order to better understand how different factors (gender,

education, age, risk-aversion) might affect travelers’ attitudes to travel reliability.
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Appendix A

Survey Questions

A.1 Personal characteristics: travel-related

1. What is your current employment status?

� Self-employed � Full-time � Part-time � Non-employed student
� Homemaker � Retired � Unemployed

If you checked 1, 2 or 3 in question 1, please answer questions 2 and 3 and 4

2. How do you usually get to your work place (or school) from home?
� Drive a vehicle alone � Carpool with family member(s)
� Carpool with others (not family members) � Take transit
� Mixed car-transit transportation � Bicycle or walk
� Others, can you specify

3. If you checked 1, 2 or 3 in question 2, how do you choose your route?
� Only one reasonable route is available to me
� I have several route choices but I use one of them everyday because it is fast and convenient
� I have several route choices and I mix use them according to real-time traffic reports and
other conditions

4. How would you describe the day-to-day fluctuation of your commuting time (the time you

spend in traveling between home and work)?
� Negligible
� Significant disruption happens occasionally (approximately once a month)
� Significant disruptions happen once or twice a week
� Largely unpredictable (disruptions in various forms happen three times a week or more)

5. Do you have accessibility to public transportation in your neighborhood?

� Yes � No
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If the answer is ”yes”, do you think the service is more reliable than driving?

� Yes � No

6. How old are you?

� 0 - 25 � 25 - 40 � 40 - 60 � 60 - 75 � 75 or older

7. What is your gender?

� Male � Female

8. What is your education background?
� Completed elementary school � Some high school
� High school graduate � Some college or technical school
� College or technique school graduate � Some graduate school
� Completed graduate degrees

A.2 Reliable Routing behavioral and attitude

9. What methods, if any, are you currently using to plan your routes? (Please check all that

apply)
� Google Maps/Yahoo Maps � In-vehicle Navigation Systems
� Traffic Reports (radio station or T.V. news) � Past Experience
� Other: (Please specify)

10. Please indicate how satisfied you are with the current routing method? Please use the

scale from 1 to 5 (1 indicates ”very unsatisfied” and 5 indicates ”very satisfied”) to specify:

11. Please use a scale from 1 to 5 to indicate how important arriving on-time is for you. (1

represents ”not important at all” and 5 represents ”extremely important”)
� Go to work (or go to school):
� Go to a doctor’s appointment:
� Go to the airport to take a flight:
� Go to a job interview:
� Go to theater:
� Go to a friend’s party:

12. Which TWO of the following factors that affect YOUR CURRENT route choice behavior

MOST?
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� Travel time � Cost (fuel consumption, the availability of vehicle)
� Reliability � Safety � Comfort and convenience
� Emission and energy conservation

13. Which TWO of the following factors that affect YOUR CURRENT route choice behavior

LEAST?
�Travel time � Cost (fuel consumption, the availability of vehicle)
� Reliability �Safety
� Comfort and convenience � Emission and energy conservation

14. Suppose you plan to arrive at the airport to take a flight at 8:30am on a weekday. Google

Map tells you that ”the trip takes 30 minutes on average and 60 minutes in traffic”. How much

time you would ”budget” for that trip?

�15 - 25 minutes � 25 - 35 minutes �35 - 45 minutes
�45 - 60 minutes hour � More than 1 hour

15. Suppose your daily work trip takes place during morning rush hour and takes approxi-

mately 30 minutes on average. How much time you would usually ”budget” for that trip?

�15 - 25 minutes � 25 - 35 minutes � 35 - 45 minutes
�45 - 60 minutes hour � More than 1 hour

16. Generally, how often does travel time reliability become a concern to your travel decision?

�Everyday � Once a few days � Once a few weeks
�Once a few months � A couple of time a year � Almost never.

17. If you are concerned about the reliability of your work trip, which of the following

information you find most useful in making your routing decision?

� The average trip travel time and the standard deviation. Roughly speaking, your trip time

is likely to be lower than the sum of average plus standard deviation with a probability of 6 out

of 7.

�A histogram plot of trip travel times, from which you may find out that one in 100 times the

trip takes 29 - 30 minutes, 3 out of 100 times the trip take 30 - 32 minutes, and so on.

�Number of times you are late for work per week , per month or per year if you always depart
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at the same time.

�The departure time that ensures you are late for work no more than once per week, per

month or per year.

18. When travel reliability is important to you, what do you do to ensure arriving on time?

Please rank the following options using 1 - 5 (1 is the most unfavorable and 5 is the most favor-

able).

Reserve more time for travel

Detour, always avoid using freeway/expressway

Detour, try to stay on freeway/expressway as much as possible

Take transit

Get real time traffic informationReliable route guidance software

A.3 Evaluation of CTR

19. Suppose you want to ensure that you are not late for work more than once a month (that

is a probability of 1 out 22 approximately). In order to meet the goal, CTR may suggest that

you are better off by switching to a relatively unfamiliar route which consists of less highway

and more local streets. CTR would tell you how much time you would save over the long run

by changing the route. How much time saving do you think would induce you to adopt the

recommended route (assume that travel time is your only concern)?
� 1-5 percent time saving (up to 1.5 minutes out of a 30 minutes trip)
� 5-10 percent time saving (up to 3 minutes out of a 30 minute trip)
� 10-20 percent time saving (up to 6 minutes out of 30 minutes trip)
� 20-30 percent time saving (up to 9 minutes out of 30 minutes trip)
� 30-50 percent time saving (up to 15 minutes out of 30 minutes trip)
� I would always stick to the familiar route

20. Currently, it takes a half minute to one minute for CTR to generate the reliable routes.

However, since reliable routes change slowly over the time, you need to run the program for any

particular trip no more than once a month. Do you think this running time is acceptable?
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Please use the scale from 1 to 5 (1 indicates ”totally unbearable” and 5 indicates ”totally ac-

ceptable”) to specify:

21. If your scale for Question 20 is lower than 3, what is the longest time you are willing to

wait to get a travel route and departure time recommendation?

22. Suppose that you are interested in receiving reliable route guidance. Where you would

like to access it?
� A stand-alone software application that can be installed on my PC or MAC
� As an add-on function in Google Maps/Yahoo Maps Application
� I-phone or other Smartphone application
� In-vehicle GPS-based navigation system
� Other: (Please specify)
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